Вы можете попробовать это -
library(stringr)
library(tidyverse)
#read input file
txt <- readLines("test.txt")
#put delimiter between columns and transform it into a dataframe
txt <- gsub("\\s+(.*)", ",\\1", txt)
df <- read.table(textConnection(txt),
header = T, stringsAsFactors = F, sep = ",", colClasses = c("ID" = "character"))
Исходный фрейм данных выглядит как
> df
# ID Voter_History
#1 0001 GE 20161108;20121106 GE;20081104 GE;20080205 PP;General Election 2004
#2 0002 2016 GENERAL ELECTION;2014 GENERAL ELECTION
#3 0003 20121106 GE;20081104 GE;General Election 2006
#4 0004 GE 20150910
#5 0005 16 GENERAL ELECTION; 14 PRIMARY ELECTION
Очистить данные Voter_History
столбца для извлечения полезной информации
election_func <- function(x){
#extract year
yr <- gsub("20", "", substr(str_extract_all(strsplit(x, split=";")[[1]], "[0-9]+"), 1, 4))
#extract election type
elec_type <- toupper(substr(str_extract(strsplit(x, split=";")[[1]], '[A-Za-z]+'), 1, 2))
return(paste(sort(paste(elec_type, yr, sep="_")), collapse = ";"))
}
df$Voter_History <- do.call(rbind, lapply(df$Voter_History, function(x) election_func(x)))
Очиститьданные
> df
# ID Voter_History
#1 0001 GE_04;GE_08;GE_12;GE_16;PP_08
#2 0002 GE_14;GE_16
#3 0003 GE_06;GE_08;GE_12
#4 0004 GE_15
#5 0005 GE_16;PR_14
Окончательно преобразуйте эти данные в нужный формат
df1 <- df %>%
separate_rows("Voter_History", sep= ";") %>%
distinct(ID, Voter_History) %>%
mutate(value = 1) %>%
spread(Voter_History, value, fill = 0)
df1
# ID GE_04 GE_06 GE_08 GE_12 GE_14 GE_15 GE_16 PP_08 PR_14
#1 0001 1 0 1 1 0 0 1 1 0
#2 0002 0 0 0 0 1 0 1 0 0
#3 0003 0 1 1 1 0 0 0 0 0
#4 0004 0 0 0 0 0 1 0 0 0
#5 0005 0 0 0 0 0 0 1 0 1
Пример данных: test.txt
содержит
ID Voter_History
0001 GE 20161108;20121106 GE;20081104 GE;20080205 PP;General Election 2004
0002 2016 GENERAL ELECTION;2014 GENERAL ELECTION
0003 20121106 GE;20081104 GE;General Election 2006
0004 GE 20150910
0005 16 GENERAL ELECTION; 14 PRIMARY ELECTION
( Обновление - добавлена логика для разрешения Error: Duplicate identifiers for rows...
. Это происходило из-за дублирования комбинации ID
& Voter_History
в spread
вызове)