mgcv: как использовать аргумент «исключить» в предикате.gam? - PullRequest
0 голосов
/ 29 января 2019

У меня есть модель, структурированная следующим образом, и я хотел бы извлечь прогнозируемые значения, игнорируя при этом случайный эффект.Как указано в ?predict.gam и здесь , я использую аргумент exclude, но получаю ошибку.Где моя ошибка?

dt <- data.frame(n1 = runif(500, min=0, max=1),
             n2 = rep(1:10,50), 
             n3 = runif(500, min=0, max=2),
             n4 = runif(500, min=0, max=2),
             c1 = factor(rep(c("X","Y"),250)),
             c2 = factor(rep(c("a", "b", "c", "d", "e"), 100)))

mod = gam(n1 ~ 
           s(n2, n3, n4, by=c1) +
           s(c2, bs="re"),
         data=dt)

newd=data.table(expand.grid(n1=seq(min(dt$n1), max(dt$n1), 0.5), 
                        n2=1:10,
                        n3=seq(min(dt$n3), max(dt$n3), 0.5),
                        n4=seq(min(dt$n4), max(dt$n4), 0.5),
                        c1=c("X", "Y")))
newd$pred <- predict.gam(mod, newd, exclude = "s(c2)")

In predict.gam(mod, newd, exclude = "s(c2)"): not all required variables have been supplied in  newdata! 

1 Ответ

0 голосов
/ 29 января 2019

exclude не работает так, как вы предполагали.Вам все еще нужно предоставить все переменные в вашем newd для predict.gam.См. Мой этот ответ о том, что стоит за predict.gam.

Вот что вам нужно сделать:

## pad newd with an arbitrary value for variable c2
newd$c2 <- "a"
## termwise prediction
pt <- predict.gam(mod, newd, type = "terms", exclude = "s(c2)")
## linear predictor without random effect
lp_no_c2 <- rowSums(pt) + attr(pt, "constant")
...