Моя модель для классификации изображений показана ниже. При использовании функции прогнозирования выдается следующая ошибка:
ValueError: Ошибка при проверке ввода: ожидается, что conv2d_1_input будет иметь форму (64, 64, 3), нополучил массив с формой (64, 64, 4)
Модель, как показано ниже:
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Conv2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Conv2D(32, (3, 3), input_shape = (64, 64, 3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Conv2D(32, (3, 3), activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(units = 128, activation = 'relu'))
classifier.add(Dense(units = 1, activation = 'sigmoid'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy',
metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
import pickle
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('Dataset/training_data',
target_size = (64, 64),batch_size = 32,class_mode = 'binary')
test_set = test_datagen.flow_from_directory('Dataset/test_data',
target_size = (64, 64),batch_size = 32,class_mode = 'binary')
classifier.fit_generator(training_set,
steps_per_epoch = 350,epochs = 2,validation_data = test_set,validation_steps
= 101)
Функция прогнозирования показана ниже: Я использовал пакет запросов, так как хочу использоватьURL изображения для прогноза.
import requests
from io import BytesIO
from PIL import Image
import numpy as np
from keras.preprocessing import image
import cv2
url='http://answers.opencv.org/upfiles/logo_2.png'
response = requests.get(url)
img = Image.open(BytesIO(response.content))
#file = cv2.imread(img)
img = img.resize((64,64))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
result = classifier.predict(x)
#training_set.class_indices
if result[0][0] == 1:
prediction = 'signature'
else:
prediction = 'nonsignature'
print(prediction)
Есть ли альтернативный способ, используя только один пакет вместо PIL и керас
Спасибо за помощь !!