Как получить несглаживающую 2D-сплайн-интерполяцию с помощью scipy - PullRequest
0 голосов
/ 30 января 2019

Я хочу, чтобы двумерный кубический сплайн соответствовал некоторым нерегулярно расположенным данным - то есть функции, которая точно соответствует данным в заданных точках - но также может возвращать значения между ними.

Все, что я могу найти (для нерегулярных разнесенных данных), это scipy.interpolate.SmoothBivariateSpline.Я не могу понять, как отключить «сглаживание» (независимо от того, какое значение я задаю в параметре s.

Однако я обнаружил, что могу получить в основном то, что хочу, с помощью scipy.interpolate.griddata- хотя для этого нужно каждый раз пересчитывать его (т. е. не просто генерировать функцию). Есть ли какая-то разница, принципиально между этими двумя - то есть griddata делает что-то отличное от «сплайна»? Есть ли способ отключить?сглаживание в SmoothBivariateSpline или эквивалентной функции, которая не сглаживает?

Ниже приведен скрипт, который я использую для проверки подгонки сплайна к полиному

import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import scipy.optimize
import scipy.interpolate
import matplotlib.pyplot as plt
import numpy.polynomial.polynomial as poly


# Grid and test function
N = 9;
x,y = np.linspace(-1,1, N), np.linspace(-1,1, N)
X,Y = np.meshgrid(x,y)
F = lambda X,Y : X+Y-1*X*Y-(X*Y)**2 -2*X*Y**2 + X**2*Y + 3*np.exp(-((X+1)**2+(Y+1)**2)*5)
Z = F(X,Y)
noise = 0.4
Z *= 1+(np.random.random(Z.shape)*2-1)*noise # noise

# Finer Grid and test function
N2 = 19;
x2,y2 = np.linspace(-1,1, N2), np.linspace(-1,1, N2)
X2,Y2 = np.meshgrid(x2,y2)
Z2 = F(X2,Y2)

# Make data into lists
Xl = X.reshape(X.size)
Yl = Y.reshape(Y.size)
Zl = Z.reshape(Z.size)

# Polynomial fit
# polyval(x,y,p) = p[0,0]+p[0,1]y+p[1,0]x+p[1,1]xy+p[1,2]xy^2 ..., etc
# I use a flat (1D) array for p, so it needs to be reshaped into a 2D array before
# passing to polyval
order = 3
p0 = np.zeros(order**2) # guess parameters (all 0 for now)
f_poly = lambda x,y,p : poly.polyval2d(x,y,p.reshape((order,order))) # Wrapper for our polynomial
errf = lambda p : np.mean((f_poly(Xl,Yl,p.reshape((order,order)))-Zl)**2) # error function to find least square error
sol = scipy.optimize.minimize(errf, p0)
psol = sol['x']

# Spline interpolation
# Bivariate (2D), Smoothed (doesn't fit points *exactly*)  cubic (3rd order - i.e. kx=ky=3) spline
spl = scipy.interpolate.SmoothBivariateSpline(Xl, Yl, Zl, kx=3,ky=3)
f_spline = spl.ev

# regular Interpolate
f_interp = lambda x,y : scipy.interpolate.griddata((Xl, Yl), Zl, (x,y), method='cubic')

# Plot
fig = plt.figure(1, figsize=(7,8))
plt.clf()

# poly fit
ax = fig.add_subplot(311, projection='3d')
ax.scatter3D(X2,Y2,Z2,s=3, color='red', label='actual data')
fit = f_poly(X2,Y2, psol)
l = 'order {} poly fit'.format(order)
ax.plot_wireframe(X2,Y2, fit, color='black', label=l)
ax.scatter3D(X,Y,Z, color='blue', label='noisy data')
plt.legend()
print("Average {} error: {}".format(l, np.sqrt(np.mean((fit-Z2)**2))))

# spline fit
ax = fig.add_subplot(312, projection='3d')
ax.scatter3D(X2,Y2,Z2,s=3, color='red', label='actual data')
l = 'smoothed spline'
fit = f_spline(X2,Y2)
ax.plot_wireframe(X2,Y2, fit, color='black', label=l)
ax.scatter3D(X,Y,Z, color='blue', label='noisy data')
plt.legend()
print("Average {} error: {}".format(l, np.sqrt(np.mean((fit-Z2)**2))))

# interp fit
ax = fig.add_subplot(313, projection='3d')
ax.scatter3D(X2,Y2,Z2,s=3, color='red', label='actual data')
l='3rd order interp '
fit=f_interp(X2,Y2)
ax.plot_wireframe(X2,Y2, fit, color='black', label=l)
ax.scatter3D(X,Y,Z, color='blue', label='noisy data')
plt.legend()
print("Average {} error: {}".format(l, np.sqrt(np.mean((fit-Z2)**2))))

plt.show(False)
plt.pause(1)

raw_input('press key to continue') # Change to input() if using python3

enter image description here

1 Ответ

0 голосов
/ 30 января 2019

Для неструктурированной сетки griddata - правильный инструмент интерполяции.Однако триангуляция (Делоне) и интерполяция выполняются каждый раз.Один из способов - использовать CloughTocher2DInterpolator для гладкой интерполяции C1 или LinearNDInterpolator для линейной интерполяции.Эти функции фактически используются griddata.Разница в том, что в качестве входных данных можно использовать Delaunay object, и он возвращает функцию интерполяции.

Вот пример, основанный на вашем коде:

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

import numpy as np
from scipy.interpolate import CloughTocher2DInterpolator
from scipy.spatial import Delaunay

# Example unstructured mesh:
nodes = np.array([[-1.        , -1.        ],
       [ 1.        , -1.        ],
       [ 1.        ,  1.        ],
       [-1.        ,  1.        ],
       [ 0.        ,  0.        ],
       [-1.        ,  0.        ],
       [ 0.        , -1.        ],
       [-0.5       ,  0.        ],
       [ 0.        ,  1.        ],
       [-0.75      ,  0.4       ],
       [-0.5       ,  1.        ],
       [-1.        , -0.6       ],
       [-0.25      , -0.5       ],
       [-0.5       , -1.        ],
       [-0.20833333,  0.5       ],
       [ 1.        ,  0.        ],
       [ 0.5       ,  1.        ],
       [ 0.36174242,  0.44412879],
       [ 0.5       , -0.03786566],
       [ 0.2927264 , -0.5411368 ],
       [ 0.5       , -1.        ],
       [ 1.        ,  0.5       ],
       [ 1.        , -0.5       ]])

# Theoretical function:
def F(x, y):
    return x + y -  x*y - (x*y)**2 - 2*x*y**2 + x**2*y + 3*np.exp( -((x+1)**2 + (y+1)**2)*5 )

z = F(nodes[:, 0], nodes[:, 1])

# Finer regular grid:
N2 = 19
x2, y2 = np.linspace(-1, 1, N2), np.linspace(-1, 1, N2)
X2, Y2 = np.meshgrid(x2, y2)

# Interpolation:
tri = Delaunay(nodes)
CT_interpolator = CloughTocher2DInterpolator(tri, z)
z_interpolated = CT_interpolator(X2, Y2)

# Plot
fig = plt.figure(1, figsize=(8,14))

ax = fig.add_subplot(311, projection='3d')
ax.scatter3D(nodes[:, 0], nodes[:, 1], z, s=15, color='red', label='points')

ax.plot_wireframe(X2, Y2, z_interpolated, color='black', label='interpolated')
plt.legend();

Полученный график:

example graph

И метод сплайна, и интерполяция Клаф-Тохера основаны на построении кусочно-полиномиальной функции на элементах сетки.Разница заключается в том, что для сплайна сетка является регулярной и задается алгоритмом (см. .get_knots()).И коэффициенты подгоняются так, чтобы функция была максимально приближена к точкам и сглажена (подгонка).Для интерполяции Клаф-Точера элементы сетки - это те, которые приведены в качестве входных данных.Таким образом, полученная функция гарантированно пройдет через точки.

...