В настоящее время я пытаюсь перенести свой существующий (рабочий) keras
код BNN на pytorch
.
Для этого мне нужно написать собственную NegativeLogLikelihood
функцию потери.Мой модульный тест для этой потери проходит (например, для фиксированных весов сети, я получаю те же результаты и градиенты, что и в моем старом (рабочем) коде keras), но в простом фиктивном примере (соответствующем функции sinc
) моя потеря дает только хорошорезультаты для batch_size == 1
, и моя сеть не может правильно соответствовать sinc
(при любом количестве итераций обучения) для больших значений.Использование nn.MSELoss
вместо этого прекрасно работает, поэтому я предполагаю проблему с моим вычислением потерь.
import matplotlib.pyplot as plt
from itertools import islice
try:
from tqdm import tqdm
except ImportError:
tqdm = lambda x, total: x
import numpy as np
import torch
from torch.utils import data as data_utils
import torch.nn as nn
class NLLLoss(torch.nn.modules.loss._Loss):
def __init__(self, parameters, num_datapoints, size_average=False, reduce=True):
super().__init__(size_average, reduce)
self.parameters = tuple(parameters)
self.num_datapoints = num_datapoints
def log_variance_prior(self, log_variance, mean=1e-6, variance=0.01):
return torch.mean(
torch.sum(
((-(log_variance - torch.log(torch.tensor(mean))) ** 2) /
((2. * variance))) - 0.5 * torch.log(torch.tensor(variance)),
dim=1
)
)
def weight_prior(self, parameters, wdecay=1.):
num_parameters = torch.sum(torch.tensor([
torch.prod(torch.tensor(parameter.size()))
for parameter in parameters
]))
log_likelihood = torch.sum(torch.tensor([
torch.sum(-wdecay * 0.5 * (parameter ** 2))
for parameter in parameters
]))
return log_likelihood / (num_parameters.float() + 1e-16)
def forward(self, input, target):
torch.nn.modules.loss._assert_no_grad(target)
batch_size, *_ = input.shape
prediction_mean = input[:, 0].view(-1, 1)
log_prediction_variance = input[:, 1].view(-1, 1)
prediction_variance_inverse = 1. / (torch.exp(log_prediction_variance) + 1e-16)
mean_squared_error = torch.pow(target - prediction_mean, 2)
log_likelihood = (
torch.sum(
torch.sum(
-mean_squared_error * 0.5 * prediction_variance_inverse -
0.5 * log_prediction_variance,
dim=1
)
)
)
log_likelihood /= batch_size
log_likelihood += (
self.log_variance_prior(log_prediction_variance) / self.num_datapoints
)
log_likelihood += self.weight_prior(self.parameters) / self.num_datapoints
return -log_likelihood
# Helper Functions {{{ #
def infinite_dataloader(dataloader):
while True:
yield from dataloader
def tanh_network(input_dimensionality: int):
class AppendLayer(nn.Module):
def __init__(self, bias=True, *args, **kwargs):
super().__init__(*args, **kwargs)
if bias:
self.bias = nn.Parameter(torch.Tensor(1, 1))
else:
self.register_parameter('bias', None)
def forward(self, x):
return torch.cat((x, self.bias * torch.ones_like(x)), dim=1)
def init_weights(module):
if type(module) == AppendLayer:
nn.init.constant_(module.bias, val=np.log(1e-3))
elif type(module) == nn.Linear:
nn.init.kaiming_normal_(module.weight, mode="fan_out", nonlinearity="linear")
nn.init.constant_(module.bias, val=0.0)
return nn.Sequential(
nn.Linear(input_dimensionality, 50), nn.Tanh(),
nn.Linear(50, 50), nn.Tanh(),
nn.Linear(50, 50), nn.Tanh(),
nn.Linear(50, 1),
AppendLayer()
).apply(init_weights)
# }}} Helper Functions #
input_dimensionality, num_datapoints = 1, 100
num_train_steps = 13000
# Set up data
x_train = np.array([
np.random.uniform(np.zeros(1), np.ones(1), input_dimensionality)
for _ in range(num_datapoints)
])
y_train = np.sinc(x_train * 10 - 5).sum(axis=1)
# Data Normalization
x_train_, x_mean, x_std = (
np.true_divide(x_train - np.mean(x_train), np.std(x_train)), np.mean(x_train), np.std(x_train)
)
y_train_, y_mean, y_std = (
np.true_divide(y_train - np.mean(y_train), np.std(y_train)), np.mean(y_train), np.std(y_train)
)
model = tanh_network(input_dimensionality=input_dimensionality)
# TODO Why does setting batch_size to 1 work with NLL, but setting it to higher values fails?
batch_size = 20 # setting this to 1 gives okay results.
loss_function = NLLLoss(model.parameters(), num_datapoints=num_datapoints)
# NOTE: Using MSE like this also works:
# loss_function = lambda input, target: nn.MSELoss()(input=input[:, 0], target=target)
train_loader = infinite_dataloader(
data_utils.DataLoader(
data_utils.TensorDataset(
torch.from_numpy(x_train_).float(),
torch.from_numpy(y_train_).float()
), batch_size=batch_size
)
)
optimizer = torch.optim.Adam(model.parameters())
# Train loop
for epoch, (x_batch, y_batch) in tqdm(enumerate(islice(train_loader, num_train_steps)), total=num_train_steps):
optimizer.zero_grad()
y_pred = model(x_batch)
loss = loss_function(input=y_pred, target=y_batch)
loss.backward()
optimizer.step()
if epoch % 100 == 0:
mse_value = nn.MSELoss()(input=y_pred[:, 0], target=y_batch)
print("Epoch: {}, Loss: {}, MSE: {}".format(epoch, loss, mse_value))
x_test = np.linspace(0, 1, 100)[:, None]
y_test = np.sinc(x_test * 10 - 5).sum(axis=1)
# Data Normalization
x_test_ = np.true_divide(x_test - x_mean, x_std)
x_test_torch = torch.from_numpy(x_test_).float()
y_test_torch = torch.from_numpy(y_test).float()
# Unnormalize predictions
y_pred = model(x_test_torch).detach().numpy() * y_std + y_mean
plt.plot(x_test[:, 0], y_test, label="true", color="black")
plt.plot(x_train[:, 0], y_train, "ro")
plt.plot(x_test[:, 0], y_pred[:, 0], label="Adam", color="blue")
plt.legend()
plt.show()
Любая помощь или предложения о том, что я мог сделать неправильно, очень ценятся!