В настоящее время я пытаюсь узнать r с помощью великих ресурсов Хэдли Уикхема («r для ученых-данных», «ggplot2 Elegant Graphics for Analysis Data»).Пока мне удалось найти ответы на все мои проблемы (большое спасибо, Хэдли!), Но не в этот раз.
В настоящее время я работаю с данными из инструмента, который оценивает размер частиц посвет рассеивают частицы (DLS, Zetasizer Nano, Malvern Instruments).Данные, извлеченные из этого устройства, представляют собой некоторую сводную статистику (например, средний размер частиц) и данные гистограммы: x = размер (разбит на ячейки), y = интенсивность [%].Вот пример одного из моих измерений:
# A tibble: 70 x 3
sample_name intensities bins
<chr> <dbl> <dbl>
1 core formulation 1 0 0.4
2 core formulation 1 0 0.463
3 core formulation 1 0 0.536
4 core formulation 1 0 0.621
5 core formulation 1 0 0.720
6 core formulation 1 0 0.833
7 core formulation 1 0 0.965
8 core formulation 1 0 1.12
9 core formulation 1 0 1.29
10 core formulation 1 0 1.50
11 core formulation 1 0 1.74
12 core formulation 1 0 2.01
13 core formulation 1 0 2.33
14 core formulation 1 0 2.70
15 core formulation 1 0 3.12
16 core formulation 1 0 3.62
17 core formulation 1 0 4.19
18 core formulation 1 0 4.85
19 core formulation 1 0 5.62
20 core formulation 1 0 6.50
21 core formulation 1 0 7.53
22 core formulation 1 0 8.72
23 core formulation 1 0 10.1
24 core formulation 1 0 11.7
25 core formulation 1 0 13.5
26 core formulation 1 0 15.7
27 core formulation 1 0 18.2
28 core formulation 1 0 21.0
29 core formulation 1 0 24.4
30 core formulation 1 0 28.2
31 core formulation 1 0 32.7
32 core formulation 1 0 37.8
33 core formulation 1 0 43.8
34 core formulation 1 0.2 50.8
35 core formulation 1 1.4 58.8
36 core formulation 1 3.7 68.1
37 core formulation 1 6.9 78.8
38 core formulation 1 10.2 91.3
39 core formulation 1 12.9 106.
40 core formulation 1 14.4 122.
41 core formulation 1 14.4 142.
42 core formulation 1 13 164.
43 core formulation 1 10.3 190.
44 core formulation 1 7.1 220.
45 core formulation 1 3.9 255
46 core formulation 1 1.5 295.
47 core formulation 1 0.2 342
48 core formulation 1 0 396.
49 core formulation 1 0 459.
50 core formulation 1 0 531.
51 core formulation 1 0 615.
52 core formulation 1 0 712.
53 core formulation 1 0 825
54 core formulation 1 0 955.
55 core formulation 1 0 1106
56 core formulation 1 0 1281
57 core formulation 1 0 1484
58 core formulation 1 0 1718
59 core formulation 1 0 1990
60 core formulation 1 0 2305
61 core formulation 1 0 2669
62 core formulation 1 0 3091
63 core formulation 1 0 3580
64 core formulation 1 0 4145
65 core formulation 1 0 4801
66 core formulation 1 0 5560
67 core formulation 1 0 6439
68 core formulation 1 0 7456
69 core formulation 1 0 8635
70 core formulation 1 0 10000
Вот данные, полученные с помощью команды dput()
:
structure(list(sample_name = c("core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1", "core formulation 1",
"core formulation 1", "core formulation 1"), intensities = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.2, 1.4, 3.7, 6.9, 10.2, 12.9,
14.4, 14.4, 13, 10.3, 7.1, 3.9, 1.5, 0.2, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), bins = c(0.4,
0.4632, 0.5365, 0.6213, 0.7195, 0.8332, 0.9649, 1.117, 1.294,
1.499, 1.736, 2.01, 2.328, 2.696, 3.122, 3.615, 4.187, 4.849,
5.615, 6.503, 7.531, 8.721, 10.1, 11.7, 13.54, 15.69, 18.17,
21.04, 24.36, 28.21, 32.67, 37.84, 43.82, 50.75, 58.77, 68.06,
78.82, 91.28, 105.7, 122.4, 141.8, 164.2, 190.1, 220.2, 255,
295.3, 342, 396.1, 458.7, 531.2, 615.1, 712.4, 825, 955.4, 1106,
1281, 1484, 1718, 1990, 2305, 2669, 3091, 3580, 4145, 4801, 5560,
6439, 7456, 8635, 10000)), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -70L))
Я могу без проблем создать гистограмму из этогоданные:
library(tidyverse)
ggplot (DLS_intensities_core, aes(bins,intensities) ) +
geom_line() +
scale_x_continuous(trans = 'log10')
Чтобы показать общее распределение размера моих частиц, я хотел бы преобразовать эти данные в график скрипки и использовать сводную статистику, предоставленнуюустройство во втором слое моего сюжета.
Поэтому я хотел бы преобразовать эти данные, чтобы иметь возможность создать на нем скрипичный сюжет.
Я уже пытался подать его наstat_density () аргумент скриптового сюжета, но пока безуспешно.
Знаете ли вы, как создать скрипичный сюжет из этих данных?
Большое спасибо!
Бест,
Доминик