Подгонка модели смешанных эффектов с использованием пакета LME4 R (базовая версия 3.5.2), запускаемого через rpy2 2.9.4 из Python 3.6
Возможность печати случайных эффектов в виде индексированного фрейма данных, где значения индекса представляют собойзначения категориальной переменной (ей), используемой для определения групп (используя радоновые данные ):
import rpy2.robjects as ro
from rpy2.robjects import pandas2ri, default_converter
from rpy2.robjects.conversion import localconverter
from rpy2.robjects.packages import importr
lme4 = importr('lme4')
mod = lme4.lmer(**kwargs) # Omitting arguments for brevity
r_ranef = ro.r['ranef']
re = r_ranef(mod)
print(re[1])
Uppm (Intercept) floor (Intercept)
AITKIN -0.0026783361 -2.588735e-03 1.742426e-09 -0.0052003670
ANOKA -0.0056688495 -6.418760e-03 -4.482764e-09 -0.0128942943
BECKER 0.0021906431 1.190746e-03 1.211201e-09 0.0023920238
BELTRAMI 0.0093246041 8.190172e-03 5.135196e-09 0.0164527872
BENTON 0.0018747838 1.049496e-03 1.746748e-09 0.0021082742
BIG STONE -0.0073756824 -2.430404e-03 0.000000e+00 -0.0048823057
BLUE EARTH 0.0112939204 4.176931e-03 5.507525e-09 0.0083908075
BROWN 0.0069223055 2.544912e-03 4.911563e-11 0.0051123339
При преобразовании этого в pandas DataFrame категориальные значения теряются из индекса изаменены на целые числа:
pandas2ri.ri2py_dataframe(r_ranef[1]) # r_ranef is a dict of dataframes
Uppm (Intercept) floor (Intercept)
0 -0.002678 -0.002589 1.742426e-09 -0.005200
1 -0.005669 -0.006419 -4.482764e-09 -0.012894
2 0.002191 0.001191 1.211201e-09 0.002392
3 0.009325 0.008190 5.135196e-09 0.016453
4 0.001875 0.001049 1.746748e-09 0.002108
5 -0.007376 -0.002430 0.000000e+00 -0.004882
6 0.011294 0.004177 5.507525e-09 0.008391
7 0.006922 0.002545 4.911563e-11 0.005112
Как сохранить значения исходного индекса?
doc предполагает, что as.data.frame
может содержать grp
, что можетбудьте теми ценностями, которые мне нужны, но я изо всех сил пытаюсь реализовать это через rpy2;например,
r_ranef = ro.r['ranef.as.data.frame']
не работает