Мы можем использовать вывод netstat -nptW
, чтобы увидеть TCP-соединения каких локальных процессов.Поскольку выходные данные могут быть чувствительны к безопасности, привилегии суперпользователя требуются для просмотра процессов, принадлежащих всем пользователям.
Поскольку нет никаких причин для запуска прокси-службы с повышенными привилегиями (возможно, ожидается CAP_NET_BIND_SERVICE
), привилегированного помощниканужна программа.
Я немного подумал над подходящей моделью безопасности и пришел к выводу, что помощник, который проверяет подключенный сокет, данный ему (как, скажем, стандартный ввод), и выводит только одноранговый PID (s), было бы самым безопасным: было бы чрезвычайно трудно злоупотреблять им, и даже если это возможно, был обнаружен только идентификатор процесса равноправного участника.
Вот примерный помощник, tcp-peer-pids.c :
#define _POSIX_C_SOURCE 200809L
#define _GNU_SOURCE
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#define EXITCODE_OK 0
#define EXITCODE_STDIN_INVALID 1
#define EXITCODE_UNKNOWN_ADDRESS 2
#define EXITCODE_NETSTAT 3
#define EXITCODE_NETSTAT_OUTPUT 4
#define EXITCODE_WRITE_ERROR 5
#define EXITCODE_PRIVILEGES 6
static pid_t *pids = NULL;
static size_t num_pids = 0;
static size_t max_pids = 0;
static int add_pid(const pid_t p)
{
size_t i;
/* Check if already listed. */
for (i = 0; i < num_pids; i++)
if (pids[i] == p)
return 0;
/* Ensure enough room in pids array. */
if (num_pids >= max_pids) {
const size_t max_temp = (num_pids | 1023) + 1025 - 8;
pid_t *temp;
temp = realloc(pids, max_temp * sizeof pids[0]);
if (!temp)
return ENOMEM;
pids = temp;
max_pids = max_temp;
}
pids[num_pids++] = p;
return 0;
}
int main(void)
{
struct sockaddr_storage sock_addr;
socklen_t sock_addrlen = sizeof sock_addr;
char sock_match[128], sock_host[64], sock_port[32];
struct sockaddr_storage peer_addr;
socklen_t peer_addrlen = sizeof peer_addr;
char peer_match[128], peer_host[64], peer_port[32];
FILE *cmd;
char *line = NULL;
size_t size = 0;
ssize_t len;
int status;
/* Socket address is *remote*, and peer address is *local*.
This is because the variables are named after their matching netstat lines. */
if (getsockname(STDIN_FILENO, (struct sockaddr *)&sock_addr, &sock_addrlen) == -1) {
fprintf(stderr, "Standard input is not a valid socket.\n");
exit(EXITCODE_STDIN_INVALID);
}
if (getpeername(STDIN_FILENO, (struct sockaddr *)&peer_addr, &peer_addrlen) == -1) {
fprintf(stderr, "Standard input is not a connected socket.\n");
exit(EXITCODE_STDIN_INVALID);
}
if ((sock_addr.ss_family != AF_INET && sock_addr.ss_family != AF_INET6) ||
(peer_addr.ss_family != AF_INET && peer_addr.ss_family != AF_INET6)) {
fprintf(stderr, "Standard input is not an IP socket.\n");
exit(EXITCODE_STDIN_INVALID);
}
/* For security, we close the standard input descriptor, */
close(STDIN_FILENO);
/* and redirect it from /dev/null, if possible. */
{
int fd = open("/dev/null", O_RDONLY);
if (fd != -1 && fd != STDIN_FILENO) {
dup2(fd, STDIN_FILENO);
close(fd);
}
}
/* Convert sockets to numerical host and port strings. */
if (getnameinfo((const struct sockaddr *)&sock_addr, sock_addrlen,
sock_host, sizeof sock_host, sock_port, sizeof sock_port,
NI_NUMERICHOST | NI_NUMERICSERV)) {
fprintf(stderr, "Unknown socket address.\n");
exit(EXITCODE_UNKNOWN_ADDRESS);
}
if (getnameinfo((const struct sockaddr *)&peer_addr, peer_addrlen,
peer_host, sizeof peer_host, peer_port, sizeof peer_port,
NI_NUMERICHOST | NI_NUMERICSERV)) {
fprintf(stderr, "Unknown peer address.\n");
exit(EXITCODE_UNKNOWN_ADDRESS);
}
/* Combine to the host:port format netstat uses. */
snprintf(sock_match, sizeof sock_match, "%s:%s", sock_host, sock_port);
snprintf(peer_match, sizeof peer_match, "%s:%s", peer_host, peer_port);
/* Switch to privileged user, if installed as setuid. */
{
uid_t real_uid = getuid();
gid_t real_gid = getgid();
uid_t effective_uid = geteuid();
gid_t effective_gid = getegid();
if (real_gid != effective_gid || real_uid != effective_uid) {
/* SetUID or SetGID in effect. Switch privileges. */
if (setresgid(effective_gid, effective_gid, effective_gid) == -1 ||
setresuid(effective_uid, effective_uid, effective_uid) == -1) {
fprintf(stderr, "Error in privileges: %s.\n", strerror(errno));
exit(EXITCODE_PRIVILEGES);
}
}
}
/* Run netstat to obtain the data; redirect standard error to standard output. */
cmd = popen("LANG=C LC_ALL=C /bin/netstat -nptW 2>&1", "r");
if (!cmd) {
fprintf(stderr, "Cannot run netstat.\n");
exit(EXITCODE_NETSTAT);
}
/* Input line loop. */
while (1) {
char *field[8], *ends;
long val;
pid_t p;
len = getline(&line, &size, cmd);
if (len < 1)
break;
/* Split each line into fields. */
field[0] = strtok(line, "\t\n\v\f\r "); /* Protocol */
/* We are only interested in tcp ("tcp" and "tcp6" protocols). */
if (strcmp(field[0], "tcp") && strcmp(field[0], "tcp6"))
continue;
field[1] = strtok(NULL, "\t\n\v\f\r "); /* Recv-Q */
field[2] = strtok(NULL, "\t\n\v\f\r "); /* Send-Q */
field[3] = strtok(NULL, "\t\n\v\f\r "); /* Local address (peer) */
field[4] = strtok(NULL, "\t\n\v\f\r "); /* Remote address (sock) */
field[5] = strtok(NULL, "\t\n\v\f\r "); /* State */
field[6] = strtok(NULL, "\t\n\v\f\r /"); /* PID */
field[7] = strtok(NULL, "\t\n\v\f\r "); /* Process name */
/* Local address must match peer_match, and foreign/remote sock_match. */
if (strcmp(field[3], peer_match) || strcmp(field[4], sock_match))
continue;
/* This line corresponds to the process we are looking for. */
/* Missing PID field is an error at this point. */
if (!field[6])
break;
/* Parse the PID. Parsing errors are fatal. */
ends = field[6];
errno = 0;
val = strtol(field[6], &ends, 10);
if (errno || ends == field[6] || *ends != '\0' || val < 1)
break;
p = (pid_t)val;
if ((long)p != val)
break;
/* Add the pid to the known pids list. */
if (add_pid(p))
break;
}
/* The line buffer is no longer needed. */
free(line);
/* I/O error? */
if (!feof(cmd) || ferror(cmd)) {
fprintf(stderr, "Error reading netstat output.\n");
exit(EXITCODE_NETSTAT_OUTPUT);
}
/* Reap the netstat process. */
status = pclose(cmd);
if (status == -1) {
fprintf(stderr, "Error reading netstat output: %s.\n", strerror(errno));
exit(EXITCODE_NETSTAT_OUTPUT);
}
if (!WIFEXITED(status)) {
fprintf(stderr, "Netstat died unexpectedly.\n");
exit(EXITCODE_NETSTAT_OUTPUT);
}
if (WEXITSTATUS(status)) {
fprintf(stderr, "Netstat failed with exit status %d.\n", WEXITSTATUS(status));
exit(EXITCODE_NETSTAT_OUTPUT);
}
/* Output the array of pids as binary data. */
if (num_pids > 0) {
const char *head = (const char *)pids;
const char *const ends = (const char *)(pids + num_pids);
ssize_t n;
while (head < ends) {
n = write(STDOUT_FILENO, head, (size_t)(ends - head));
if (n > 0)
head += n;
else
if (n != -1)
exit(EXITCODE_WRITE_ERROR);
else
if (errno != EINTR)
exit(EXITCODE_WRITE_ERROR);
}
}
/* Discard the pids array. */
free(pids);
exit(EXITCODE_OK);
}
Он может быть запущен с использованием обычных пользовательских привилегий (в этом случае он будет знать только о процессах, принадлежащих этому пользователю), привилегиями root или в качестве setuid root.
Если используется с sudo
, убедитесь, что вы используете правило proxyuser ALL = NOPASSWD: /path/to/helper
, потому что sudo
не может там спрашивать пароль.Вероятно, я бы просто установил помощника в качестве пользователя root с именем setuid на /usr/lib/yourproxy/tcp-peer-pid
, владельца root, сгруппировал группу прокси-серверов и не имел бы доступа к другим пользователям (root: proxygroup -r-sr-x---
).
Помощник тесно связанв netstat -nptW
выходной формат, но явно устанавливает языковой стандарт C, чтобы избежать получения локализованного вывода.
Строки сравнения address:port
, соответствующие «Локальному адресу» и «Внешнему адресу» в выводе netstat, построены изадреса, возвращаемые getpeername()
и getsockname()
, соответственно, используя [getnameinfo()
(http://man7.org/linux/man-pages/man3/getnameinfo.3.html) в числовой форме (используя NI_NUMERICHOST | NI_NUMERICSERV
flags).
Помощник предоставляет серверу идентификаторы PID в двоичном виде, потому что в противном случае код сервера был бы слишком длинным, чтобы поместиться в одном посте.
Вот пример службы TCP, server.c , который использует вышеупомянутый помощник для определения PID равноправного конца сокета на локальном компьютере. (Чтобы избежать атак типа "отказ в обслуживании", вы должны установить фильтр IP, которыйотклоняет ACпереходит к вашему сервисному порту прокси вне компьютера.)
#define _POSIX_C_SOURCE 200809L
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <sys/select.h>
#include <sys/wait.h>
#include <fcntl.h>
#include <netdb.h>
#include <signal.h>
#include <string.h>
#include <stdio.h>
#include <errno.h>
#ifndef HELPER_PATH
#define HELPER_PATH "./tcp-peer-pids"
#endif
#ifndef HELPER_NAME
#define HELPER_NAME "tcp-peer-pids"
#endif
#ifndef SUDO_PATH
#define SUDO_PATH "/usr/bin/sudo"
#endif
#ifndef SUDO_NAME
#define SUDO_NAME "sudo"
#endif
/*
* Signal handler, to detect INT (Ctrl+C), HUP, and TERM signals.
*/
static volatile sig_atomic_t done = 0;
static void handle_done(int signum)
{
/* In Linux, all signals have signum > 0. */
__atomic_store_n(&done, (sig_atomic_t)signum, __ATOMIC_SEQ_CST);
}
static int install_done(int signum)
{
struct sigaction act;
memset(&act, 0, sizeof act);
sigemptyset(&act.sa_mask);
act.sa_flags = SA_RESTART; /* Do not interrupt slow syscalls. */
act.sa_handler = handle_done;
if (sigaction(signum, &act, NULL) == -1)
return -1; /* errno set by getpeername() */
return 0;
}
/* Helper function: Move descriptors away from STDIN/STDOUT/STDERR.
Returns 0 if successful, -1 with errno set if an error occurs. */
static inline int normalfds(int fd[], const size_t n)
{
unsigned int closemask = 0;
int err = 0;
size_t i;
int newfd;
for (i = 0; i < n; i++)
while (fd[i] == STDIN_FILENO || fd[i] == STDOUT_FILENO || fd[i] == STDERR_FILENO) {
newfd = dup(fd[i]);
if (newfd == -1) {
err = errno;
break;
}
closemask |= 1u << fd[i];
fd[i] = newfd;
}
/* Close temporary descriptors. */
if (closemask & (1u << STDIN_FILENO)) close(STDIN_FILENO);
if (closemask & (1u << STDOUT_FILENO)) close(STDOUT_FILENO);
if (closemask & (1u << STDERR_FILENO)) close(STDERR_FILENO);
/* Success? */
if (!err)
return 0;
/* Report error. */
errno = err;
return -1;
}
/* Return the number of peer processes.
If an error occurs, returns zero; examine errno. */
size_t peer_pids(const int connfd, pid_t *const pids, size_t maxpids)
{
char *in_data = NULL;
size_t in_size = 0;
size_t in_used = 0;
size_t n;
int binpipe[2], status;
pid_t child, p;
/* Sanity check. */
if (connfd == -1) {
errno = EBADF;
return 0;
}
/* Create a pipe to transfer the PIDs (in binary). */
if (pipe(binpipe) == -1)
return 0; /* errno set by pipe(). */
/* Make sure the binary pipe descriptors do not conflict with standard descriptors. */
if (normalfds(binpipe, 2) == -1) {
const int saved_errno = errno;
close(binpipe[0]);
close(binpipe[1]);
errno = saved_errno;
return 0;
}
/* Fork a child process. */
child = fork();
if (child == -1) {
const int saved_errno = errno;
close(binpipe[0]);
close(binpipe[1]);
errno = saved_errno;
return 0;
}
if (!child) {
/* This is the child process. */
#ifdef USE_SUDO
const char *cmd_path = SUDO_PATH;
char *const cmd_args[3] = { SUDO_NAME, HELPER_PATH, NULL };
#else
const char *cmd_path = HELPER_PATH;
char *const cmd_args[2] = { HELPER_NAME, NULL };
#endif
/* The child runs in its own process group, for easier management. */
setsid();
/* Close read end of pipe. */
close(binpipe[0]);
/* Move established connection to standard input. */
if (connfd != STDIN_FILENO) {
if (dup2(connfd, STDIN_FILENO) != STDIN_FILENO)
_Exit(99);
close(connfd);
}
/* Move write end of pipe to standard output. */
if (dup2(binpipe[1], STDOUT_FILENO) != STDOUT_FILENO)
_Exit(99);
else
close(binpipe[1]);
/* Execute helper. */
execv(cmd_path, cmd_args);
/* Failed to execute helper. */
_Exit(98);
}
/* Parent process. */
/* Close write end of pipe, so we detect when child exits. */
close(binpipe[1]);
/* Read all output from child. */
status = 0;
while (1) {
ssize_t bytes;
if (in_used >= in_size) {
const size_t size = (in_used | 1023) + 1025 - 8;
char *temp;
temp = realloc(in_data, in_size);
if (!temp) {
status = ENOMEM;
break;
}
in_data = temp;
in_size = size;
}
bytes = read(binpipe[0], in_data + in_used, in_size - in_used);
if (bytes > 0) {
in_used += bytes;
} else
if (bytes == 0) {
/* End of input condition. */
break;
} else
if (bytes != -1) {
status = EIO;
break;
} else
if (errno != EINTR) {
status = errno;
break;
}
}
/* Close the pipe. */
close(binpipe[0]);
/* Abort, if an error occurred. */
if (status) {
free(in_data);
kill(-child, SIGKILL);
do {
p = waitpid(child, NULL, 0);
} while (p == -1 && errno == EINTR);
errno = status;
return 0;
}
/* Reap the child process. */
do {
status = 0;
p = waitpid(child, &status, 0);
} while (p == -1 && errno == EINTR);
if (p == -1) {
const int saved_errno = errno;
free(in_data);
errno = saved_errno;
return 0;
}
if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) {
free(in_data);
errno = ESRCH; /* The helper command failed, really. */
return 0;
}
/* We expect an integer number of pid_t's. Check. */
n = in_used / sizeof (pid_t);
if ((in_used % sizeof (pid_t)) != 0) {
free(in_data);
errno = EIO;
return 0;
}
/* None found? */
if (!n) {
free(in_data);
errno = ENOENT; /* Not found, really. */
return 0;
}
/* Be paranoid, and verify the pids look sane. */
{
const pid_t *const pid = (const pid_t *const)in_data;
size_t i;
for (i = 0; i < n; i++)
if (pid[i] < 2) {
free(in_data);
errno = ESRCH; /* Helper failed */
return 0;
}
}
/* Copy to user buffer, if specified. */
if (maxpids > n)
memcpy(pids, in_data, n * sizeof (pid_t));
else
if (maxpids > 0)
memcpy(pids, in_data, maxpids * sizeof (pid_t));
/* The pid buffer is no longer needed. */
free(in_data);
/* Return the number of pids we actually received. */
return n;
}
int main(int argc, char *argv[])
{
struct addrinfo hints, *list, *curr;
const char *node, *serv;
int service_fd, err;
struct sockaddr_storage client_addr;
socklen_t client_addrlen;
int client_fd;
if (argc != 3) {
fprintf(stderr, "\n");
fprintf(stderr, "Usage: %s [ -h | --help ]\n", argv[0]);
fprintf(stderr, " %s HOST PORT\n", argv[0]);
fprintf(stderr, "\n");
return EXIT_FAILURE;
}
/* Install signal handers for Ctrl+C, HUP, and TERM. */
if (install_done(SIGINT) ||
install_done(SIGHUP) ||
install_done(SIGTERM)) {
fprintf(stderr, "Cannot install signal handlers: %s.\n", strerror(errno));
return EXIT_FAILURE;
}
/* Empty or - or * is a wildcard host. */
if (argv[1][0] == '\0' || !strcmp(argv[1], "-") || !strcmp(argv[1], "*"))
node = NULL;
else
node = argv[1];
serv = argv[2];
memset(&hints, 0, sizeof hints);
hints.ai_family = AF_UNSPEC; /* IPv4 or IPv6 */
hints.ai_socktype = SOCK_STREAM; /* TCP */
hints.ai_flags = AI_PASSIVE;
hints.ai_protocol = 0;
hints.ai_canonname = NULL;
hints.ai_addr = NULL;
hints.ai_next = NULL;
list = NULL;
err = getaddrinfo(node, serv, &hints, &list);
if (err) {
fprintf(stderr, "Invalid host and/or port: %s.\n", gai_strerror(err));
return EXIT_FAILURE;
}
service_fd = -1;
err = 0;
for (curr = list; curr != NULL; curr = curr->ai_next) {
service_fd = socket(curr->ai_family, curr->ai_socktype, curr->ai_protocol);
if (service_fd == -1)
continue;
errno = 0;
if (bind(service_fd, curr->ai_addr, curr->ai_addrlen) == -1) {
if (!err)
if (errno == EADDRINUSE || errno == EADDRNOTAVAIL || errno == EACCES)
err = errno;
close(service_fd);
service_fd = -1;
continue;
}
if (listen(service_fd, 5) == -1) {
if (!err)
if (errno == EADDRINUSE)
err = errno;
close(service_fd);
service_fd = -1;
continue;
}
/* This socket works. */
break;
}
freeaddrinfo(list);
list = curr = NULL;
if (service_fd == -1) {
if (err)
fprintf(stderr, "Cannot listen for incoming connections on the specified host and port: %s.\n", strerror(err));
else
fprintf(stderr, "Cannot listen for incoming connections on the specified host and port.\n");
return EXIT_FAILURE;
}
/* Do not leak the listening socket to child processes. */
fcntl(service_fd, F_SETFD, FD_CLOEXEC);
/* We also want the listening socket to be nonblocking. */
fcntl(service_fd, F_SETFL, O_NONBLOCK);
fprintf(stderr, "Process %ld is waiting for incoming TCP connections.\n", (long)getpid());
/* Incoming connection loop. */
while (!done) {
struct timeval t;
char client_host[64]; /* 64 for numeric, 1024 for non-numeric */
char client_port[32];
pid_t client_pid;
fd_set fds;
t.tv_sec = 0;
t.tv_usec = 100000; /* Max. 0.1s delay to react to done signal. */
FD_ZERO(&fds);
FD_SET(service_fd, &fds);
if (select(service_fd + 1, &fds, NULL, NULL, &t) < 1)
continue;
client_addrlen = sizeof client_addr;
client_fd = accept(service_fd, (struct sockaddr *)&client_addr, &client_addrlen);
if (client_fd == -1) {
if (errno == EINTR || errno == ECONNABORTED)
continue;
fprintf(stderr, "Error accepting an incoming connection: %s.\n", strerror(errno));
continue;
}
if (getnameinfo((const struct sockaddr *)&client_addr, client_addrlen,
client_host, sizeof client_host, client_port, sizeof client_port,
NI_NUMERICHOST | NI_NUMERICSERV) != 0) {
fprintf(stderr, "Cannot resolve peer address for incoming connection, so dropping it.\n");
close(client_fd);
continue;
}
printf("Incoming connection from %s:%s", client_host, client_port);
fflush(stdout);
if (peer_pids(client_fd, &client_pid, 1) != 1) {
printf(", but cannot determine process ID. Dropped.\n");
close(client_fd);
continue;
}
printf(" from local process %ld.\n", (long)client_pid);
fflush(stdout);
/*
* Handle connection.
*/
printf("Closing connection.\n");
fflush(stdout);
close(client_fd);
}
/* Close service socket. */
close(service_fd);
switch (__atomic_load_n(&done, __ATOMIC_SEQ_CST)) {
case SIGINT:
fprintf(stderr, "Received INT signal.\n");
break;
case SIGHUP:
fprintf(stderr, "Received HUP signal.\n");
break;
case SIGTERM:
fprintf(stderr, "Received TERM signal.\n");
break;
}
return EXIT_SUCCESS;
}
Функция peer_pids()
связывается с вспомогательным процессом.Это очень просто, хотя и осторожно, чтобы не возвращать ненадежные данные: вместо того, чтобы игнорировать ошибки или пытаться восстановить их, он сообщает об ошибке.Это позволяет основной программе делать if (peer_pids(client_fd, &pid, 1) != 1) /* Don't know! */
и отбрасывать любое соединение, в котором сервер не уверен - подход, который я считаю здесь нормальным.
Вспомогательная функция normalfds()
часто игнорируется.Это помогает избежать проблем, если какой-либо из стандартных потоков закрыт / закрыт.Он просто перемещает набор дескрипторов из трех стандартных потоков, используя не более трех дополнительных дескрипторов.
Вы можете определить USE_SUDO
во время компиляции, чтобы использовать sudo при выполнении помощника.Определите HELPER_PATH
и HELPER_NAME
для абсолютного пути к помощнику и его имени файла соответственно.(Как и сейчас, по умолчанию они ./tcp-peer-pid
и tcp-peer-pid
, для более простого тестирования.)
Сервер устанавливает обработчик сигнала для INT ( Ctrl + C), HUP (отправляется, когда пользователь закрывает терминал) или сигналы TERM, которые заставляют его прекращать принимать новые соединения и выходить контролируемым образом.(Поскольку обработчик сигнала устанавливается с использованием флага SA_RESTART
, его доставка не будет прерывать медленные системные вызовы или вызывать errno == EINTR
. Это также означает, что accept()
не должен блокироваться, или доставка сигнала не будет замечена. Таким образом, блокировка вselect()
в течение 0,1 с, и проверка того, был ли сигнал доставлен между ними, является хорошим компромиссом, по крайней мере, на примере сервера.)
На моей машине я скомпилировал и протестировал сервис водно окно терминала, используя
gcc -Wall -O2 tcp-peer-pids.c -o tcp-peer-pids
gcc -Wall -O2 "-DHELPER_PATH=\"$PWD/tcp-peer-pids\"" server.c -o server
./server - 2400
, которое сообщит Process # is waiting for incoming TCP connections
.В другом окне, используя оболочку Bash или POSIX, я запускаю одну или несколько тестовых команд netcat:
nc localhost 2400 & wait
Может показаться глупым запускать команду в фоновом режиме и сразу же ждать ее, но таким образом выможно увидеть PID процесса nc
.
В моей системе все петлевые (127.x.y.z
), TCP / IPv4 и TCP / IPv6 (адреса моих интерфейсов Ethernet и WiFi) работали нормально и надежно сообщали правильный PID процесса, подключающегося к серверу примера.
В ряде случаев количество сообщаемых PID может варьироваться: например, если программа выполнила дочерний процесс, но оставила подключенный дескриптор открытым и в дочернем.(Это следует считать ошибкой.) Другой типичный случай - программа, завершившаяся до выполнения команды netstat
.
Если вы обнаружите какие-либо опечатки, ошибки или странное поведение, дайте мне знать в комментарии, чтобы я мог проверить и исправить.Я написал обе программы за один раз, так что они могут содержать ошибки.Как я уже упоминал, я бы не стал доверять ни производству, ни тому, чтобы коллега (или я сам несколько раз, а потом со свежими глазами) прошел через него с критическим / параноидальным взглядом.
Я быЛично использовать этот подход только для ведения журнала и статистики, а не контроль доступа как таковой.Под контролем доступа я имею в виду, что вы должны настроить IP-фильтр (встроенный в ядро Linux брандмауэр), чтобы ограничить доступ только доверенным хостам;и, в частности, не разрешать входящие прокси-соединения со службой прокси, если только локальные приложения должны быть проксированы, вместо того, чтобы полагаться на это при обнаружении всех удаленных соединений.
Для регистрации / ограничения для конкретного приложения используйте readlink()
на псевдосимклине /proc/PID/exe
.Это не может быть подделано, но вызов может завершиться ошибкой, если исполняемый файл недоступен или находится слишком глубоко в дереве каталогов.(В этих случаях я бы вообще отказался от прокси-соединения.)
Обратите внимание, что обычно пользователю тривиально скопировать исполняемый файл в любой каталог, которым он владеет, и выполнить его оттуда.Это означает, что для того, чтобы ограничение для конкретного приложения работало вообще, вы должны иметь жесткие ограничения для всех приложений по умолчанию и ослаблять ограничения для конкретных исполняемых файлов.