Я использую модель логистической регрессии.вот мой код и вывод.
f1<-glm(outcome~atsi_yes,data = train_df,family = binomial)
# Printing summary of the model
summary(f1)
summary(f1)$coeff
# We can see that:
#
# The intercept= -0.05638043 which corresponds to the log odds for atsi_yes (where atsi_yes = 0) being in positive outcome.
#
# The coefficient for atsi_yes = 1.20222767 which corresponds to the log of odds ratio between both the instances of atsi_yes (i.e. 1 and 0).
# Calculating The Log Odds
exp(coef(f1))
# Calculating The Log Odds Manually
train_df$outcome <- as.numeric(train_df$outcome)
o1<-train_df %>%
group_by(atsi_yes,outcome) %>%
summarise(freq=n()) %>%
mutate(all=sum(freq),prob=freq/all,odds=prob/(1-prob),logodds=log(odds)) %>%
round(.,5)
pander(o1)
# -----------------------------------------------------------------
# atsi_yes outcome freq all prob odds logodds
# ---------- --------- ------- ------- -------- -------- ----------
# 0 1 21087 41018 0.5141 1.058 0.05638
#
# 0 2 19931 41018 0.4859 0.9452 -0.05638
#
# 1 1 572 2371 0.2412 0.318 -1.146
#
# 1 2 1799 2371 0.7588 3.145 1.146
# -----------------------------------------------------------------
logistic.display(f1)
# For profile likelihood intervals for this quantity
library(MASS)
exp(cbind(coef(f1), confint(f1)))
Как видите, я получаю вывод, но я хочу увидеть его для набора поездов и проверки, который, я полагаю, я могу получить после запуска моделидля тестовых данных, но я хочу соотношение шансов для каждого квинтиля, как показано на рисунке ниже.