В настоящее время я пытаюсь создать модель внутри машинного обучения Azure.Насколько вы знаете, это использует CRAN R 3.1.0.этот код работает как шарм в R на локальном ПК с CRAN R 3.5.1, но в Azure ML я столкнулся с проблемой, что
Параметры окончательной настройки не могут быть определены
data <- maml.mapInputPort(1) # class: data.frame
data$time <- as.POSIXct(as.numeric(as.POSIXct(data$time, format = timeformat, tz= "UTC", origin = "1970-01-01"), tz = "UTC"), tz = "UTC", origin = "1970-01-01")
library(caret, verbose=TRUE)
library(foreach)
library(plyr)
sku <- aggregate(data.frame(count = data$ID2), list(value = data$ID2), length)
sku.length <- nrow(sku)
t1 <- trainControl(method = "cv", number = 10, repeats = 3)
y <- data$value[data$ID2==sku$value[1], drop = FALSE]
x <- data[data$ID2==sku$value[1], c("year", "month", "weekofyear", "FreqCos1", "FreqSin1", "FreqCos2", "FreqSin2", "FreqCos3", "FreqSin3", "FreqCos4", "FreqSin4", "Salary", "PPCY", "PPCM", "goldP", "kursUSD",
"is_holiday", "collectionYear", "GoodsPrice", "Promo_cnt", "lag1", "lag2", "lag3", "lag4", "lag5", "lag6", "lag7", "lag8", "lag9", "lag10"),drop = FALSE]
lt1 <- train.default(x,y,
method="glm",
family=poisson,
preProcess = NULL,
metric = ifelse(is.factor(y), "Accuracy", "RMSE"),
maximize = ifelse(ifelse(is.factor(y), "Accuracy", "RMSE") %in% c("RMSE", "logLoss", "MAE"), FALSE, TRUE),
trControl = t1,
tuneGrid = expand.grid(.parameter=c(0.001, 0.01, 0.1, 1,10,100, 1000)),
tuneLength = 100)
pt1 <- predict(lt1)