У меня есть a
n-мерный массив, к которому я хочу применить оконную функцию.Короче говоря, мне нужно создать функцию window
для каждого измерения и умножить ее на массив a
.Например, я сначала создаю оконную функцию для первого измерения, складываю ее для остальных измерений и умножаю ее по точкам на массив a
.Я последовательно делаю это для всех размеров массива.
Я смог сделать это, учтя размеры массива в условной структуре, такой как if a.ndim == 1: ... elif a.ndim == 2: ...
и так далее.Вот MCVE с не обобщенной версией, которая делает это (например, 1D и 3D-массивы):
import numpy as np
import scipy.signal as signal
def window_ndim(a, wfunction):
"""
Performs an in-place windowing on N-dimensional data.
This is done to mitigate boundary effects in the FFT.
:param a: Input data to be windowed, modified in place.
:param wfunction: 1D window generation function. Example: scipy.signal.hamming
:return: windowed a
"""
if a.ndim == 1:
return a * wfunction(len(a))
elif a.ndim == 2:
window0 = wfunction(a.shape[0])
window1 = wfunction(a.shape[1])
window0 = np.stack([window0] * a.shape[1], axis=1)
window1 = np.stack([window1] * a.shape[0], axis=0)
a *= window0*window1
return a
elif a.ndim == 3:
window0 = wfunction(a.shape[0])
window1 = wfunction(a.shape[1])
window2 = wfunction(a.shape[2])
window0 = np.stack([window0] * a.shape[1], axis=1)
window0 = np.stack([window0] * a.shape[2], axis=2)
window1 = np.stack([window1] * a.shape[0], axis=0)
window1 = np.stack([window1] * a.shape[2], axis=2)
window2 = np.stack([window2] * a.shape[0], axis=0)
window2 = np.stack([window2] * a.shape[1], axis=1)
a *= window0*window1*window2
return a
else: raise ValueError('Wrong dimensions')
np.random.seed(0)
np.set_printoptions(precision=2)
a = np.random.rand(2,3,4)
# [[[0.55 0.72 0.6 0.54]
# [0.42 0.65 0.44 0.89]
# [0.96 0.38 0.79 0.53]]
# [[0.57 0.93 0.07 0.09]
# [0.02 0.83 0.78 0.87]
# [0.98 0.8 0.46 0.78]]]
a_windowed = window_ndim(a, signal.hamming)
# [[[2.81e-04 3.52e-03 2.97e-03 2.79e-04]
# [2.71e-03 3.98e-02 2.70e-02 5.71e-03]
# [4.93e-04 1.89e-03 3.90e-03 2.71e-04]]
# [[2.91e-04 4.56e-03 3.50e-04 4.46e-05]
# [1.29e-04 5.13e-02 4.79e-02 5.57e-03]
# [5.01e-04 3.94e-03 2.27e-03 4.00e-04]]]
a = np.random.rand(10) # [0.12 0.64 0.14 0.94 0.52 0.41 0.26 0.77 0.46 0.57]
a_windowed = window_ndim(a, signal.hamming) # [0.01 0.12 0.07 0.73 0.51 0.4 0.2 0.36 0.09 0.05]
My цель - обобщить эту условную структуру, поэтому мне не нужнопроверить размеры корпуса массива.Нечто подобное for axis, axis_size in enumerate(a.shape):...
было бы более элегантным и учитывало бы n-мерный массив, а не только 1, 2 или 3 измерения.Моя попытка включала что-то с itertools.cycle
и itertools.islice
, состоящим из
axis_idxs = np.arange(len(a.shape))
the_cycle = cycle(axis_idxs)
for axis, axis_size in enumerate(a.shape):
axis_cycle = islice(the_cycle, axis, None)
next_axis = next(axis_cycle)
window = wfunction(axis_size)
window = np.stack([window]*a.shape[next_axis], axis=next_axis)
...
a *= window
return a
Но никогда не получалось слишком далеко, поскольку для a.ndim == 3
сложно построить оконную функцию из второй оси, так как мне сначала нужностек для первой оси, а затем для последней оси, в отличие от других оконных функций (первая и последняя оси), где я последовательно складываю по следующей оси, циклически переключаясь по axis_cycle
.