Я хотел бы визуализировать и понять компоненты модели Arima (1,1,1) правильно.
Как бы я мог количественно оценить вклад, который AR и MA-Терминпредоставить для каждого установленного значения серии серии?
Я думаю, что я в основном смог сделать это для модели (1,0,1), см. пример ниже
library(forecast)
library(tidyverse)
library(ggfortify)
arima_101 <- Arima(AirPassengers, c(1, 0, 1), include.mean = F) # only works without mean
autoplot(arima_101)
# get coefficients
ar1_coef <- coef(arima_101)["ar1"]
ma1_coef <- coef(arima_101)["ma1"]
# try to compute contributions by components
ar1_part <- AirPassengers %>%
as.numeric() %>%
dplyr::lag(1) %>%
`*`(ar1_coef)
ma1_part <- resid(arima_101) %>%
as.numeric() %>%
dplyr::lag(1) %>%
`*`(ma1_coef)
fitted_values <- fitted(arima_101) %>% as.numeric()
# inspect results
df <- tibble(idx = 1:144, ar1_part, ma1_part, fitted_values) %>%
mutate(sum_ar1_ma1 = ar1_part + ma1_part)
df %>%
gather("component", "contribution", -idx, -fitted_values, -sum_ar1_ma1) %>%
# %>%
ggplot(aes(idx, contribution)) +
geom_area(aes(fill = component)) +
geom_line(aes(idx, value, linetype = result),
alpha = 0.3,
data = gather(df, "result", "value", -idx, -ar1_part, -ma1_part))
#> Warning: Removed 2 rows containing missing values (position_stack).
#> Warning: Removed 1 rows containing missing values (geom_path).
fitted_values == ar1_part + ma1_part
#> [1] NA FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE TRUE TRUE
#> [23] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [34] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [45] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [56] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [67] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [78] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [89] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [100] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [111] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [122] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [133] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
#> [144] TRUE