Экспоненциальные уравнения могут быть весьма чувствительными к оценкам начальных параметров нелинейного решателя.По умолчанию многие нелинейные решатели, включая scipy's curve_fit, используют значения начальных параметров по умолчанию, равные 1,0, для этих начальных оценок параметров, если они не предоставлены, и в данном конкретном случае эти значения не были хорошими начальными оценками для вашей комбинации данных и уравнения.Scipy включает в себя генетический алгоритм, который можно использовать для определения начальных оценок параметров, и для их реализации требуются границы, в которых можно искать.Вот пример графического решателя, использующего для этой цели модуль генетического алгоритма scipy diff_evolution. Обратите внимание на диапазоны, которые я использовал для поиска генетического алгоритма.Таким способом гораздо проще задавать диапазоны для параметров, чем для явных значений, хотя это не всегда верно, так как здесь это работает.Вам нужно будет изменить путь к файлу, который я использовал для загрузки данных.
import numpy, scipy, matplotlib
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy.optimize import differential_evolution
import warnings
filename = '/home/zunzun/Downloads/data.dat'
data = numpy.loadtxt(filename)
xData = numpy.array(data[:,0])
yData = numpy.array(data[:,1])
def func(x, a, b, c):
return a*numpy.exp(b*x**c)
# function for genetic algorithm to minimize (sum of squared error)
def sumOfSquaredError(parameterTuple):
warnings.filterwarnings("ignore") # do not print warnings by genetic algorithm
val = func(xData, *parameterTuple)
return numpy.sum((yData - val) ** 2.0)
def generate_Initial_Parameters():
# min and max used for bounds
maxX = max(xData)
minX = min(xData)
maxY = max(yData)
minY = min(yData)
minData = min(minX, minY)
maxData = min(maxX, maxY)
parameterBounds = []
parameterBounds.append([-maxData * 10.0, maxData * 10.0]) # search bounds for a
parameterBounds.append([-maxData * 10.0, maxData * 10.0]) # search bounds for b
parameterBounds.append([-maxData * 10.0, maxData * 10.0]) # search bounds for c
# "seed" the numpy random number generator for repeatable results
result = differential_evolution(sumOfSquaredError, parameterBounds, seed=3)
return result.x
# by default, differential_evolution completes by calling curve_fit() using parameter bounds
geneticParameters = generate_Initial_Parameters()
# now call curve_fit without passing bounds from the genetic algorithm,
# just in case the best fit parameters are aoutside those bounds
fittedParameters, pcov = curve_fit(func, xData, yData, geneticParameters)
print('Fitted parameters:', fittedParameters)
print()
modelPredictions = func(xData, *fittedParameters)
absError = modelPredictions - yData
SE = numpy.square(absError) # squared errors
MSE = numpy.mean(SE) # mean squared errors
RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
Rsquared = 1.0 - (numpy.var(absError) / numpy.var(yData))
print()
print('RMSE:', RMSE)
print('R-squared:', Rsquared)
print()
##########################################################
# graphics output section
def ModelAndScatterPlot(graphWidth, graphHeight):
f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
axes = f.add_subplot(111)
# first the raw data as a scatter plot
axes.plot(xData, yData, 'D')
# create data for the fitted equation plot
xModel = numpy.linspace(min(xData), max(xData))
yModel = func(xModel, *fittedParameters)
# now the model as a line plot
axes.plot(xModel, yModel)
axes.set_xlabel('X Data') # X axis data label
axes.set_ylabel('Y Data') # Y axis data label
plt.show()
plt.close('all') # clean up after using pyplot
graphWidth = 800
graphHeight = 600
ModelAndScatterPlot(graphWidth, graphHeight)