Привет, ребята. У меня проблема с подгонкой кривой, я получаю странные результаты, ниже мой код:
x=np.array([ 0. , 117.999, 239.843, 307.682, 478.998,
599.465, 719.569, 839.406, 959.895, 1079.811,
1199.307, 1319.546, 1439.448, 1560.056, 1679.475,
1799.219, 1919.637, 2039.599, 2160.254, 2279.731,
2399.728, 2519.749, 2639.661, 2759.891, 2879.454,
2999.56 , 3119.91 , 3239.72 , 3359.448, 3479.005,
3599.566, 3719.498, 3839.534, 3959.571, 4079.377,
4199.786, 4319.232, 4438.888, 4560.006, 4679.155,
4799.745, 4919.229, 5039.53 , 5159.228, 5279.553,
5400.278, 5518.791, 5638.914, 5759.079, 5880.445,
5999.498, 6119.269, 6239.705, 6359.813, 6480.192,
6600.37 , 6719.434, 6839.191, 6959.195, 7079.549,
7198.495, 7318.533, 7438.822, 7559.135, 7678.648,
7798.731, 7918.261, 8038.651, 8158.605, 8279.093,
8398.671, 8519.004, 8638.563, 8759.005, 8878.764,
8998.315, 9118.957, 9239.002, 9358.446, 9478.628,
9598.738, 9719.122, 9839.224, 9958.617, 10078.85 ,
10199.199, 10319.528, 10438.573, 10559.071, 10679.363])
y=np.array([ 121.32, 129.31, 135.11, 139.71, 147.66, 156.09, 163.03,
170. , 177.08, 184.77, 191.38, 198.73, 204.51, 211.83,
219.51, 225.53, 232.54, 238.21, 245.94, 252.82, 259.15,
266.75, 274.07, 280.93, 287.73, 294.88, 302.89, 309.8 ,
316.32, 322.87, 331.42, 336.98, 344.63, 348.29, 354.48,
360.99, 368.03, 372.79, 376.91, 384.85, 388.97, 394.49,
396.82, 401.43, 408.19, 407.6 , 415.95, 416.8 , 416.2 ,
424.01, 426.7 , 428.67, 431.59, 434.18, 437.4 , 441.59,
437.17, 441.6 , 445.85, 446.06, 449.68, 449.19, 449.63,
451.75, 451.05, 453.37, 452.8 , 457.66, 459.33, 460.5 ,
458.22, 461.3 , 461.22, 462.81, 461.62, 462.99, 457.83,
462.3 , 464.88, 466.13, 464.85, 468.6 , 467.93, 467.19,
468.06, 469.46, 469.82, 471.9 , 469.01, 469.06])
Яиспользование scipy.optimize.curve_fit для экспоненциального подбора.
def func(x, a, b, c):
return a*np.exp(-b*x)+c
a0 = y.ptp()
b0 = -1/x.ptp()
c0 = y.min()
popt, pcov = curve_fit(func, x, y, p0=(a0, b0, c0), maxfev = 2000)
plt.figure()
plt.plot(x, y, 'ko', label="Original Noised Data")
plt.plot(x, func(x, *popt), 'r-', label="Fitted Curve")
plt.legend()
plt.show()
кривая подгонки выглядит не очень хорошо
edit: значения popt и pcov edit2: я изменил значения, чтобы они выглядели как экспонента
popt
array([ 2.23557884e+06, -1.48238130e-08, -2.23539443e+06])
pcov
array([[ 5.35480790e+16, 3.55032838e+02, -5.35480791e+16],
[ 3.55032838e+02, 2.35392818e-12, -3.55032839e+02],
[ -5.35480791e+16, -3.55032839e+02, 5.35480792e+16]])