Я работал с версией cvxpy 0.4, и в этой версии я запрограммировал линейную модель, штрафуемую группой лассо, следующим образом:
from cvxpy import *
from sklearn.datasets import load_boston
import numpy as np
boston = load_boston()
x = boston.data
y = boston.target
index = np.array([1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5])
lambda_val = 1
0.4 версия
n = x.shape[0]
lambda_param = Parameter(sign="positive")
index = np.append(0, index)
x = np.c_[np.ones(n), x]
group_sizes = []
beta_var = []
unique_index = np.unique(index)
for idx in unique_index:
group_sizes.append(len(np.where(index == idx)[0]))
beta_var.append(Variable(len(np.where(index == idx)[0])))
num_groups = len(group_sizes)
group_lasso_penalization = 0
model_prediction = x[:, np.where(index == unique_index[0])[0]] * beta_var[0]
for i in range(1, num_groups):
model_prediction += x[:, np.where(index == unique_index[i])[0]] * beta_var[i]
group_lasso_penalization += sqrt(group_sizes[i]) * norm(beta_var[i], 2)
lm_penalization = (1.0 / n) * sum_squares(y - model_prediction)
objective = Minimize(lm_penalization + (lambda_param * group_lasso_penalization))
problem = Problem(objective)
lambda_param.value = lambda_val
problem.solve(solver=ECOS)
beta_sol = [b.value for b in beta_var]
1.0 Версия
n = x.shape[0]
lambda_param = Parameter(nonneg=True)
index = np.append(0, index)
x = np.c_[np.ones(n), x]
group_sizes = []
beta_var = []
unique_index = np.unique(index)
for idx in unique_index:
group_sizes.append(len(np.where(index == idx)[0]))
beta_var.append(Variable(shape=(len(np.where(index == idx)[0]), 1)))
num_groups = len(group_sizes)
model_prediction = 0
group_lasso_penalization = 0
model_prediction = x[:, np.where(index == unique_index[0])[0]] * beta_var[0]
for i in range(1, num_groups):
model_prediction += x[:, np.where(index == unique_index[i])[0]] * beta_var[i]
group_lasso_penalization += sqrt(group_sizes[i]) * norm(beta_var[i], 2)
lm_penalization = (1.0 / n) * sum_squares(y.reshape((n, 1)) - model_prediction)
objective = Minimize(lm_penalization + (lambda_param * group_lasso_penalization))
problem = Problem(objective)
lambda_param.value = lambda_val
problem.solve(solver=ECOS)
beta_sol = [b.value for b in beta_var]
При использовании версии кода 1.0 отображается следующее сообщение об ошибке: ![image](https://user-images.githubusercontent.com/43582258/46081418-bde8a700-c19c-11e8-9da2-10a95b14e598.png)
Итак, я думаю, что я правильно перенес код с версии 0.4 на 1.0, но проблема в том, что вВерсия 0.4 была решена с помощью ECOS Solver, в версии 1.0 отображается сообщение об ошибке.Я что-то здесь не так делаю?На всякий случай, если это важно, я запускаю этот код в miniconda python 2.7 на машине с Windows.