У меня есть правило в snakemake
, которое запускает кластеризацию HDBSCAN
.Раньше он был обычным DBSCAN
и работал нормально, но после того, как я его модифицировал, проблема как-то началась (я изменил также файл Snakemake
по другим причинам, поэтому трудно сказать, в чем виноват).Итак, я начал видеть такую картинку, когда через HDBSCAN
проходит только один файл и генерируются результаты.Это не дает ошибок, просто следующие правила говорят, что они ожидают отсутствующие файлы (которые не были сгенерированы правилом, которое запускает HDBSCAN
).Вот как выглядят соответствующие части файла Snakemake
:
configfile: "config.yml"
samples,=glob_wildcards('data_files/normalized/{sample}.hdf5')
rule all:
input:
expand('results/tsne/{sample}_tsne.csv', sample=samples),
expand('results/umap/{sample}_umap.csv', sample=samples),
expand('results/umap/img/{sample}_umap.png', sample=samples),
expand('results/tsne/img/{sample}_tsne.png', sample=samples),
expand('results/clusters/umap/{sample}_umap_clusters.csv', sample=samples),
expand('results/clusters/tsne/{sample}_tsne_clusters.csv', sample=samples),
expand('results/neo4j/{sample}/{file}', sample=samples,
file=['cells.csv', 'genes.csv', 'cl_contains.csv', 'cl_isin.csv', 'cl_nodes.csv', 'expr_by.csv', 'expr_ess.csv']),
'results/neo4j/db_command'
rule cluster:
input:
script = 'python/dbscan.py',
umap = 'results/umap/{sample}_umap.csv'
output:
umap = 'results/umap/img/{sample}_umap.png',
clusters_umap = 'results/clusters/umap/{sample}_umap_clusters.csv'
shell:
"python {input.script} -umap_data {input.umap} -min_cluster_size {config[dbscan][min_cluster_size]} -img_umap {output.umap} -clusters_umap {output.clusters_umap}"
Вот как выглядит dbscan.py
:
import numpy as np
import matplotlib.pyplot as plt
plt.switch_backend('agg')
from hdbscan import HDBSCAN
import pathlib
import os
import nice_service as ns
def run_dbscan(args):
print('running HDBSCAN')
path_to_img = args['-img_umap']
path_to_clusters = args['-clusters_umap']
path_to_data = args['-umap_data']
# If folders in paths do not exist, create them
for path_to_save in path_to_img:
img_dir = os.path.dirname(path_to_save)
pathlib.Path(img_dir).mkdir(parents=True, exist_ok=True)
for path_to_save in path_to_clusters:
cluster_dir = os.path.dirname(path_to_save)
pathlib.Path(cluster_dir).mkdir(parents=True, exist_ok=True)
#for idx, path_to_data in enumerate(data_arr):
data = np.loadtxt(open(path_to_data, "rb"), delimiter=",")
db = HDBSCAN(min_cluster_size=int(args['-min_cluster_size'])).fit(data)
# 'TRUE' where the point was assigned to cluster, 'FALSE' where not assigned
# aka 'noise'
core_samples_mask = np.zeros_like(db.labels_, dtype=bool)
core_samples_mask[db.labels_ != -1] = True
labels = db.labels_
# Number of clusters in labels, ignoring noise if present.
n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0)
print('Estimated number of clusters: %d' % n_clusters_)
unique_labels = set(labels)
colors = [plt.cm.Spectral(each)
for each in np.linspace(0, 1, len(unique_labels))]
for k, col in zip(unique_labels, colors):
if k == -1:
# Black used for noise.
col = [0, 0, 0, 1]
class_member_mask = (labels == k)
xy = data[class_member_mask & core_samples_mask]
plt.plot(xy[:, 0], xy[:, 1], '.', color=tuple(col), markersize=1)
#plt.legend()
plt.title('Estimated number of clusters: %d' % n_clusters_)
plt.savefig(path_to_img, dpi = 500)
np.savetxt(path_to_clusters, labels.astype(int), fmt='%i', delimiter=",")
print('Finished running HDBSCAN algorithm')
if __name__ == '__main__':
from sys import argv
myargs = ns.getopts(argv)
print(myargs)
run_dbscan(myargs)
Входные файлы для rule cluster
все присутствуют и являются правильными.Каким-то образом правило просто пропускается для всех остальных файлов, кроме одного.