Я хотел бы украсить несколько столбцов данных в фрейме данных pandas.В каждом столбце есть некоторое количество NaN, которое влияет на винсоризацию, поэтому их необходимо удалить.Единственный способ, которым я знаю, как это сделать, это удалить их для всех данных, а не удалять их только столбец за столбцом.
MWE:
import numpy as np
import pandas as pd
from scipy.stats.mstats import winsorize
# Create Dataframe
N, M, P = 10**5, 4, 10**2
dates = pd.date_range('2001-01-01', periods=N//P, freq='D').repeat(P)
df = pd.DataFrame(np.random.random((N, M))
, index=dates)
df.index.names = ['DATE']
df.columns = ['one','two','three','four']
# Now scale them differently so you can see the winsorization
df['four'] = df['four']*(10**5)
df['three'] = df['three']*(10**2)
df['two'] = df['two']*(10**-1)
df['one'] = df['one']*(10**-4)
# Create NaN
df.loc[df.index.get_level_values(0).year == 2002,'three'] = np.nan
df.loc[df.index.get_level_values(0).month == 2,'two'] = np.nan
df.loc[df.index.get_level_values(0).month == 1,'one'] = np.nan
Вот базовое распределение:
df.quantile([0, 0.01, 0.5, 0.99, 1])
вывод:
one two three four
0.00 2.336618e-10 2.294259e-07 0.002437 2.305353
0.01 9.862626e-07 9.742568e-04 0.975807 1003.814520
0.50 4.975859e-05 4.981049e-02 50.290946 50374.548980
0.99 9.897463e-05 9.898590e-02 98.978263 98991.438985
1.00 9.999983e-05 9.999966e-02 99.996793 99999.437779
Вот как я winsorizing:
def using_mstats(s):
return winsorize(s, limits=[0.01, 0.01])
wins = df.apply(using_mstats, axis=0)
wins.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])
Что дает это:
Out[356]:
one two three four
0.00 0.000001 0.001060 1.536882 1003.820149
0.01 0.000001 0.001060 1.536882 1003.820149
0.25 0.000025 0.024975 25.200378 25099.994780
0.50 0.000050 0.049810 50.290946 50374.548980
0.75 0.000075 0.074842 74.794537 75217.343920
0.99 0.000099 0.098986 98.978263 98991.436957
1.00 0.000100 0.100000 99.996793 98991.436957
Столбец four
является правильным, потому что у него нет NaN
, а остальные неверны.99-й процентиль и Макс должны быть одинаковыми.Количество наблюдений одинаково для обоих:
In [357]: df.count()
Out[357]:
one 90700
two 91600
three 63500
four 100000
dtype: int64
In [358]: wins.count()
Out[358]:
one 90700
two 91600
three 63500
four 100000
dtype: int64
Вот как я могу «решить» это, но ценой потери многих моих данных:
wins2 = df.loc[df.notnull().all(axis=1)].apply(using_mstats, axis=0)
wins2.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])
Вывод:
Out[360]:
one two three four
0.00 9.686203e-07 0.000928 0.965702 1005.209503
0.01 9.686203e-07 0.000928 0.965702 1005.209503
0.25 2.486052e-05 0.024829 25.204032 25210.837443
0.50 4.980946e-05 0.049894 50.299004 50622.227179
0.75 7.492750e-05 0.075059 74.837900 75299.906415
0.99 9.895563e-05 0.099014 98.972310 99014.311761
1.00 9.895563e-05 0.099014 98.972310 99014.311761
In [361]: wins2.count()
Out[361]:
one 51700
two 51700
three 51700
four 51700
dtype: int64
Как можно украсить данные по столбцам, которые не являются NaN, при сохранении формы данных (т.е. без удаления строк)?