Извлечение и добавление к данным значений функции плотности вероятности на основе стандартной линейной модели - PullRequest
0 голосов
/ 08 февраля 2019

Учитывая данные выборки sampleDT и модели lm.fit и brm.fit ниже, я бы хотел:

оценить, извлечь и добавить в кадр данных значения функции плотностидля условного нормального распределения, оцениваемого на наблюдаемом уровне переменной dollar.wage_1.

, я могу сделать это с помощью частотной линейной регрессии lm.fit и dnorm, но моя попытка сделать то же самое с использованиемБайесовская brm.fit модель не работает.Поэтому любая помощь будет принята с благодарностью.

## пример данных

sampleDT<-structure(list(id = 1:10, N = c(10L, 10L, 10L, 10L, 10L, 10L, 
    10L, 10L, 10L, 10L), A = c(62L, 96L, 17L, 41L, 212L, 143L, 143L, 
    143L, 73L, 73L), B = c(3L, 1L, 0L, 2L, 170L, 21L, 0L, 33L, 62L, 
    17L), C = c(0.05, 0.01, 0, 0.05, 0.8, 0.15, 0, 0.23, 0.85, 0.23
    ), employer = c(1L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 0L, 0L), F = c(0L, 
    0L, 0L, 0L, 0L, 1L, 1L, 1L, 1L, 1L), G = c(1.94, 1.19, 1.16, 
    1.16, 1.13, 1.13, 1.13, 1.13, 1.12, 1.12), H = c(0.14, 0.24, 
    0.28, 0.28, 0.21, 0.12, 0.17, 0.07, 0.14, 0.12), dollar.wage_1 = c(1.94, 
    1.19, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_2 = c(1.93, 
    1.18, 3.15, 3.15, 1.12, 1.12, 2.12, 1.12, 1.11, 1.11), dollar.wage_3 = c(1.95, 
    1.19, 3.16, 3.16, 1.14, 1.13, 2.13, 1.13, 1.13, 1.13), dollar.wage_4 = c(1.94, 
    1.18, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_5 = c(1.94, 
    1.19, 3.16, 3.16, 1.14, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_6 = c(1.94, 
    1.18, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_7 = c(1.94, 
    1.19, 3.16, 3.16, 1.14, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_8 = c(1.94, 
    1.19, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_9 = c(1.94, 
    1.19, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12), dollar.wage_10 = c(1.94, 
    1.19, 3.16, 3.16, 1.13, 1.13, 2.13, 1.13, 1.12, 1.12)), row.names = c(NA, 
    -10L), class = "data.frame")

## Модель для частых: это работает

lm.fit <-lm(dollar.wage_1 ~ A + B + C + employer + F + G + H,
            data=sampleDT)

sampleDT$dens1 <-dnorm(sampleDT$dollar.wage_1,mean=lm.fit$fitted,
sd=summary(lm.fit)$sigma) 

## байесовская модель: это моя попытка - она ​​не работает

//this works
brm.fit <-brm(dollar.wage_1 ~ A + B + C + employer + F + G + H,
            data=sampleDT, iter = 4000, family = gaussian())

//this does not work
 sampleDT$dens1_bayes <-dnorm(sampleDT$dollar.wage_1, mean = fitted(brm.fit), sd=summary(brm.fit)$sigma) 

Ошибка в dnorm (sampleDT $ dollar.wage_1, mean =brm.fit $ fit, sd = summary (brm.fit) $ sigma): нечисловой аргумент математической функции

Заранее благодарен за любую помощь.

1 Ответ

0 голосов
/ 08 февраля 2019

Теперь у нас есть fitted(brm.fit) - матрица, поэтому мы хотим использовать только ее первый столбец - столбец оценок.Кроме того, поскольку нет никаких оснований для одинаковой структуры объекта, summary(brm.fit)$sigma ничего не дает.Вместо этого вы хотите summary(brm.fit)$spec_pars[1].Следовательно, вы можете использовать

sampleDT$dens1_bayes <- dnorm(sampleDT$dollar.wage_1,
                              mean = fitted(brm.fit)[, 1],
                              sd = summary(brm.fit)$spec_pars[1])
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...