Использование Tensorflow tf.einsum()
(который можно обернуть слоем Lambda
для Keras):
import tensorflow as tf
import numpy as np
a, h, w, m, n = 1, 2, 3, 4, 5
F1 = tf.random_uniform(shape=(a, h, w, m))
F2 = tf.random_uniform(shape=(a, h, w, n))
G = tf.einsum('ahwm,ahwn->amn', F1, F2) / (h * w)
with tf.Session() as sess:
f1, f2, g = sess.run([F1, F2, G])
# Manually computing G to check our operation, reproducing naively your equation:
g_check = np.zeros(shape=(a, m, n))
for k in range(a):
for i in range(m):
for j in range(n):
for s in range(h):
for t in range(w):
g_check[k, i, j] += f1[k,s,t,i] * f2[k,s,t,j] / (h * w)
# Checking for equality:
print(np.allclose(g, g_check))
# > True