Я пытался написать в Idris доказательство относительно следующего оператора модуляции на основе вычитания:
mod : (x, y : Nat) -> Not (y = Z) -> Nat
mod x Z p = void (p Refl)
mod x (S k) _ = if lt x (S k) then x else helper x (minus x (S k)) (S k)
where total
helper : Nat -> Nat -> Nat -> Nat
helper Z x y = x
helper (S k) x y = if lt x y then x else helper k (minus x y) y
Теорема, которую я хотел доказать, состоит в том, что остаток, полученный с помощью "мода" выше, всегда меньшечем делитель.А именно,
mod_prop : (x, y : Nat) -> (p : Not (y=0))-> LT (mod x y p) y
Я построил доказательство, но застрял в последней дыре.Мой полный код вставлен ниже
mod : (x, y : Nat) -> Not (y = Z) -> Nat
mod x Z p = void (p Refl)
mod x (S k) _ = if lt x (S k) then x else helper x (minus x (S k)) (S k)
where total
helper : Nat -> Nat -> Nat -> Nat
helper Z x y = x
helper (S k) x y = if lt x y then x else helper k (minus x y) y
lteZK : LTE Z k
lteZK {k = Z} = LTEZero
lteZK {k = (S k)} = let ih = lteZK {k=k} in
lteSuccRight {n=Z} {m=k} ih
lte2LTE_True : True = lte a b -> LTE a b
lte2LTE_True {a = Z} prf = lteZK
lte2LTE_True {a = (S _)} {b = Z} Refl impossible
lte2LTE_True {a = (S k)} {b = (S j)} prf =
let ih = lte2LTE_True {a=k} {b=j} prf in LTESucc ih
lte2LTE_False : False = lte a b -> GT a b
lte2LTE_False {a = Z} Refl impossible
lte2LTE_False {a = (S k)} {b = Z} prf = LTESucc lteZK
lte2LTE_False {a = (S k)} {b = (S j)} prf =
let ih = lte2LTE_False {a=k} {b=j} prf in (LTESucc ih)
total
mod_prop : (x, y : Nat) -> (p : Not (y=0))-> LT (mod x y p) y
mod_prop x Z p = void (p Refl)
mod_prop x (S k) p with (lte x k) proof lxk
mod_prop x (S k) p | True = LTESucc (lte2LTE_True lxk)
mod_prop Z (S k) p | False = LTESucc lteZK
mod_prop (S x) (S k) p | False with (lte (minus x k) k) proof lxk'
mod_prop (S x) (S k) p | False | True = LTESucc (lte2LTE_True lxk')
mod_prop (S x) (S Z) p | False | False = LTESucc ?hole
Когда я запускаю проверку типов, дыра описывается следующим образом:
- + Main.hole [P]
`-- x : Nat
p : (1 = 0) -> Void
lxk : False = lte (S x) 0
lxk' : False = lte (minus x 0) 0
--------------------------------------------------------------------------
Main.hole : LTE (Main.mod, helper (S x) 0 p x (minus (minus x 0) 1) 1) 0
Я не знаком с приведенным синтаксисом Main.mod, helper (S x) 0 p x (minus (minus x 0) 1) 1
в окне idris-hole .Я думаю, (S x) 0 p
- это три параметра «mod», а (minus (minus x 0) 1) 1
- это три параметра локальной «вспомогательной» функции «mod»?
Кажется, пришло время использовать гипотезу индукции.Но как я могу закончить доказательство, используя индукцию?