MNE-Python может делать местоположение источника для непрерывных (необработанных) данных.Вам просто нужно подумать, что использовать для вычисления ковариации шума.Для данных о состоянии покоя хорошим выбором для ковариации шума является фрагмент данных пустой комнаты.Вот пример использования примера набора данных, который поставляется с MNE-Python:
import mne
# Load the sample data
path = mne.datasets.sample.data_path()
raw = mne.io.read_raw_fif(path + '/MEG/sample/sample_audvis_raw.fif', preload=True)
# Make a noise covariance matrix using empty room data
empty_room = mne.io.read_raw_fif(path + '/MEG/sample/ernoise_raw.fif', preload=True)
noise_cov = mne.compute_raw_covariance(empty_room, tmin=0, tmax=None)
# Load the leadfield (=forward operator)
fwd = mne.read_forward_solution(path + '/MEG/sample/sample_audvis-meg-oct-6-fwd.fif')
# Make the inverse operator
inv = mne.minimum_norm.make_inverse_operator(raw.info, fwd, noise_cov)
# Compute MNE source estimate for the continuous resting state data. The result
# is a huge matrix, so let's downsample the original raw a bit.
raw.resample(100) # Downsample to 100 Hz
resting_state = mne.minimum_norm.apply_inverse_raw(raw, inv, lambda2=1E-4)