Программно мой код обнаруживает разницу между двумя классами изображений и всегда отклоняет один класс, в то время как всегда допускает другой.
Мне еще предстоит найти какую-либо разницу между изображениями, которые дают ошибку, и изображениями, которые не дают ошибку.Но должна быть некоторая разница, потому что те, которые выдают ошибку, делают это 100% времени, а другие работают как положено 100% времени.
В частности, я проверил формат цвета:RGB в обеих группах;размер: нет заметной разницы;тип данных: uint8 в обоих;величина значений пикселей: одинаковые в обоих случаях.
Ниже приведены два изображения, которые никогда не работают, и два изображения, которые всегда работают:
Как определить разницу?
Сценарий состоит в том, что я использую Firebase с интерфейсом Swift для iOS, чтобы отправлять эти изображения в размещенный в сети Google Cloud ML-engine сервис-коннет.,Некоторые изображения работают постоянно, а некоторые другие никогда не работают так, как указано выше.Кроме того, все образы работают, когда я использую версии gcloud для CLI.Для меня проблема обязательно что-то в изображениях.Поэтому я публикую здесь для группы изображений.Код включен по запросу для полноты.
КОД файла index.js включен:
'use strict';
const functions = require('firebase-functions');
const gcs = require('@google-cloud/storage');
const admin = require('firebase-admin');
const exec = require('child_process').exec;
const path = require('path');
const fs = require('fs');
const google = require('googleapis');
const sizeOf = require('image-size');
admin.initializeApp(functions.config().firebase);
const db = admin.firestore();
const rtdb = admin.database();
const dbRef = rtdb.ref();
function cmlePredict(b64img) {
return new Promise((resolve, reject) => {
google.auth.getApplicationDefault(function (err, authClient) {
if (err) {
reject(err);
}
if (authClient.createScopedRequired && authClient.createScopedRequired()) {
authClient = authClient.createScoped([
'https://www.googleapis.com/auth/cloud-platform'
]);
}
var ml = google.ml({
version: 'v1'
});
const params = {
auth: authClient,
name: 'projects/myproject-18865/models/my_model',
resource: {
instances: [
{
"image_bytes": {
"b64": b64img
}
}
]
}
};
ml.projects.predict(params, (err, result) => {
if (err) {
reject(err);
} else {
resolve(result);
}
});
});
});
}
function resizeImg(filepath) {
return new Promise((resolve, reject) => {
exec(`convert ${filepath} -resize 224x ${filepath}`, (err) => {
if (err) {
console.error('Failed to resize image', err);
reject(err);
} else {
console.log('resized image successfully');
resolve(filepath);
}
});
});
}
exports.runPrediction = functions.storage.object().onChange((event) => {
fs.rmdir('./tmp/', (err) => {
if (err) {
console.log('error deleting tmp/ dir');
}
});
const object = event.data;
const fileBucket = object.bucket;
const filePath = object.name;
const bucket = gcs().bucket(fileBucket);
const fileName = path.basename(filePath);
const file = bucket.file(filePath);
if (filePath.startsWith('images/')) {
const destination = '/tmp/' + fileName;
console.log('got a new image', filePath);
return file.download({
destination: destination
}).then(() => {
if(sizeOf(destination).width > 224) {
console.log('scaling image down...');
return resizeImg(destination);
} else {
return destination;
}
}).then(() => {
console.log('base64 encoding image...');
let bitmap = fs.readFileSync(destination);
return new Buffer(bitmap).toString('base64');
}).then((b64string) => {
console.log('sending image to CMLE...');
return cmlePredict(b64string);
}).then((result) => {
console.log(`results just returned and is: ${result}`);
let predict_proba = result.predictions[0]
const res_pred_val = Object.keys(predict_proba).map(k => predict_proba[k])
const res_val = Object.keys(result).map(k => result[k])
const class_proba = [1-res_pred_val,res_pred_val]
const opera_proba_init = 1-res_pred_val
const capitol_proba_init = res_pred_val-0
// convert fraction double to percentage int
let opera_proba = (Math.floor((opera_proba_init.toFixed(2))*100))|0
let capitol_proba = (Math.floor((capitol_proba_init.toFixed(2))*100))|0
let feature_list = ["houses", "trees"]
let outlinedImgPath = '';
let imageRef = db.collection('predicted_images').doc(filePath.slice(7));
outlinedImgPath = `outlined_img/${filePath.slice(7)}`;
imageRef.set({
image_path: outlinedImgPath,
opera_proba: opera_proba,
capitol_proba: capitol_proba
});
let predRef = dbRef.child("prediction_categories");
let arrayRef = dbRef.child("prediction_array");
predRef.set({
opera_proba: opera_proba,
capitol_proba: capitol_proba,
});
arrayRef.set({first: {
array_proba: [opera_proba,capitol_proba],
brief_description: ["a","b"],
more_details: ["aaaa","bbbb"],
feature_list: feature_list},
zummy1: "",
zummy2: ""});
return bucket.upload(destination, {destination: outlinedImgPath});
});
} else {
return 'not a new image';
}
});