Я использую Tensorflow для локального обучения моего набора данных (с API обнаружения объектов) с 1080 Nvidia 8 ГБ,
Я использую create_pet_tf_record.py
для создания файлов TFRecords.Я не тренируюсь с нуля. Я использую mask_rcnn_inception_v2_coco_2018_01_28/model.ckpt
как fine_tune_checkpoint
.
. Когда я бегу python object_detection/train.py
и /eval.py
, я проверяю процесс обучения и оценки через Tensorboard.Первоначально все выглядит правильно, как этот pic1 с нулевым шагом.
Интервал контрольной контрольной точки требует много времени для сохранения.После более чем 5,000
этапов обучения оценка переместилась с /model.ckpt-0
на /model.ckpt-3642
, и в этот момент весь процесс будет НЕ в порядке, как показано в этом pic2 .
Этоэто мой файл mask_rcnn_inception_v2.config
model {
faster_rcnn {
num_classes: 1
image_resizer {
fixed_shape_resizer {
height: 375
width: 500
}
}
number_of_stages: 3
feature_extractor {
type: 'faster_rcnn_inception_v2'
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
scales: [0.25, 0.5, 1.0, 2.0]
aspect_ratios: [0.5, 1.0, 2.0]
height_stride: 16
width_stride: 16
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.7
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
use_dropout: false
dropout_keep_probability: 1.0
predict_instance_masks: true
mask_height: 15
mask_width: 15
mask_prediction_conv_depth: 0
mask_prediction_num_conv_layers: 2
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.01
}
}
}
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.0
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 300
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
second_stage_mask_prediction_loss_weight: 4.0
}
}
train_config: {
batch_size: 1
optimizer {
momentum_optimizer: {
learning_rate: {
manual_step_learning_rate {
initial_learning_rate: 0.0002
schedule {
step: 900000
learning_rate: .00002
}
schedule {
step: 1200000
learning_rate: .000002
}
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "/home/jesse/gpu-py3/models/research/object_detection/models/model/mask_rcnn_inception_v2_coco_train/mask_rcnn_inception_v2_coco_2018_01_28/model.ckpt"
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 200000
data_augmentation_options {
random_horizontal_flip {
}
}
}
train_input_reader: {
tf_record_input_reader {
input_path: "/home/jesse/gpu-py3/models/research/ttt/pet_train.record"
}
label_map_path: "/home/jesse/gpu-py3/models/research/object_detection/data/pet_label_map.pbtxt"
load_instance_masks: true
mask_type: PNG_MASKS
}
eval_config: {
num_examples: 8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
}
eval_input_reader: {
tf_record_input_reader {
input_path: "/home/jesse/gpu-py3/models/research/ttt/pet_val.record"
}
label_map_path: "/home/jesse/gpu-py3/models/research/object_detection/data/pet_label_map.pbtxt"
load_instance_masks: true
mask_type: PNG_MASKS
shuffle: false
num_readers: 1
}
Я не знаю, где я ошибаюсь, я чувствую, что мне следует чаще проводить оценку, и контрольную точку обучения следует сохранять, например, каждые 2000 шагов.Или мне может понадобиться отредактировать файл конвейера mask_rcnn_inception_v2.config
.Я не знаю, почему результат обучения очень разочарован после 3642
шагов, как видно из pic2 .
Любая помощь высоко ценится