Я пытаюсь определить func (x), чтобы использовать здесь библиотеку генетических водорослей: https://github.com/bobirdmi/genetic-algorithms/tree/master/examples Однако, когда я пытаюсь использовать sga.init_random_population(population_size, params, interval)
, код жалуется на меня, используя tf.Tensors в качестве python bools,
Тем не менее, я ссылаюсь только на один bool во всем коде (Elitism), поэтому я понятия не имею, почему эта ошибка даже отображается.Спросил у других, кто использовал sga.init _... и мой ввод / настройка в порядке.Буду признателен за любые предложения.
Полный возврат:
Traceback (most recent call last):
File "C:\Users\Eric\eclipse-workspace\hw1\ga2.py", line 74, in <module>
sga.init_random_population(population_size, params, interval)
File "C:\Program Files\Python36\lib\site-packages\geneticalgs\real_ga.py", line 346, in init_random_population
self._sort_population()
File "C:\Program Files\Python36\lib\site-packages\geneticalgs\standard_ga.py", line 386, in _sort_population
self.population.sort(key=lambda x: x.fitness_val, reverse=True)
File "C:\Program Files\Python36\lib\site-packages\tensorflow\python\framework\ops.py", line 671, in __bool__
raise TypeError("Using a `tf.Tensor` as a Python `bool` is not allowed. "
TypeError: Using a `tf.Tensor` as a Python `bool` is not allowed. Use `if t is not None:` instead of `if t:` to test if a tensor is defined, and use TensorFlow ops such as tf.cond to execute subgraphs conditioned on the value of a tensor.
код
import hw1
#import matplotlib
from geneticalgs import BinaryGA, RealGA, DiffusionGA, MigrationGA
#import numpy as np
#import csv
#import time
#import pickle
#import math
#import matplotlib.pyplot as plt
from keras.optimizers import Adam
from hw1 import x_train, y_train, x_test, y_test
from keras.losses import mean_squared_error
#import tensorflow as tf
from keras.models import Sequential
from keras.layers import Dense, Dropout
# GA standard settings
generation_num = 50
population_size = 16
elitism = True
selection = 'rank'
tournament_size = None # in case of tournament selection
mut_type = 1
mut_prob = 0.05
cross_type = 1
cross_prob = 0.95
optim = 'min' # minimize or maximize a fitness value? May be 'min' or 'max'.
interval = (-1, 1)
# Migration GA settings
period = 5
migrant_num = 3
cloning = True
def func(x):
#dimensions of weights and biases
#layer0weights = [10][23]
#layer0biases = [10]
#layer1weights = [10][20]
#layer1biases = [20]
#layer2weights = [1][20]
#layer2biases = [1]
#split up x for weights and biases
lay0 = x[0:230]
bias0 = x[230:240]
lay1 = x[240:440]
bias1 = x[440:460]
lay2 = x[460:480]
bias2 = x[480:481]
#fit to the shape of the actual model
lay0 = lay0.reshape(23,10)
bias0 = bias0.reshape(10,)
lay1 = lay1.reshape(10,20)
bias1 = bias1.reshape(20,)
lay2 = lay2.reshape(20,1)
bias2 = bias2.reshape(1,)
#set the newly shaped object to layers
hw1.model.layers[0].set_weights([lay0, bias0])
hw1.model.layers[1].set_weights([lay1, bias1])
hw1.model.layers[2].set_weights([lay2, bias2])
res = hw1.model.predict(x_train)
error = mean_squared_error(res,y_train)
return error
ga_model = Sequential()
ga_model.add(Dense(10, input_dim=23, activation='relu'))
ga_model.add(Dense(20, activation='relu'))
ga_model.add(Dense(1, activation='sigmoid'))
sga = RealGA(func, optim=optim, elitism=elitism, selection=selection,
mut_type=mut_type, mut_prob=mut_prob,
cross_type=cross_type, cross_prob=cross_prob)
params = 481
sga.init_random_population(population_size, params, interval)
optimal = sga.best_solution[0]
predict = func(optimal)
print(predict)