Я пытаюсь запустить тестовую программу, чтобы проверить, правильно ли настроена моя среда Anaconda.Однако, когда я запускаю свою тестовую программу, я получаю это сообщение об ошибке, когда программа настраивает график (точнее, обратный вызов on_train_end()
):
OMP: Ошибка № 15: Инициализация libiomp5.dylib,но найденный libiomp5.dylib уже инициализирован.OMP: Подсказка Это означает, что было несколько копий среды выполнения OpenMP, поскольку это может ухудшить производительность или привести к неверным результатам.Лучшее, что можно сделать, - убедиться, что в процесс включена только одна среда выполнения OpenMP, например, избегая статического связывания среды выполнения OpenMP в любой библиотеке.В качестве небезопасного, неподдерживаемого, недокументированного обходного пути вы можете установить переменную среды KMP_DUPLICATE_LIB_OK = TRUE, чтобы позволить программе продолжить выполнение, но это может привести к сбоям или молча приводить к неверным результатам.Для получения дополнительной информации см. http://www.intel.com/software/products/support/.
Я запускаю тестовую программу на моем MacBook Pro 15 "2015, где установлен macOS Mojave 10.14.1. Дистрибутив Anaconda, который я сейчас установилis https://repo.anaconda.com/archive/Anaconda2-5.3.0-MacOSX-x86_64.sh.
Вот тестовая программа:
#!/usr/bin/env python
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow import keras
Xs = np.array([
[0, 0],
[0, 1],
[1, 1],
[1, 0]
])
Ys = np.array([
[0],
[1],
[0],
[1]
])
class MyCallback(keras.callbacks.Callback):
def __init__(self):
super(MyCallback, self).__init__()
self.stats = []
def on_epoch_end(self, epoch, logs=None):
self.stats.append({
'loss': logs['loss'],
'acc': logs['acc'],
'epoch': epoch
})
def on_train_end(self, logs=None):
loss_x = []
loss_y = []
acc_x = []
acc_y = []
for e in self.stats:
loss_x.append(e['epoch'])
loss_y.append(e['loss'])
acc_x.append(e['epoch'])
acc_y.append(e['acc'])
plt.plot(loss_x, loss_y, 'r', label='Loss')
plt.plot(acc_x, acc_y, 'b', label='Accuracy')
plt.xlabel('Epochs')
plt.ylabel('Loss / Accuracy')
plt.legend(loc='upper left')
plt.show()
with tf.Session() as session:
model = keras.models.Sequential()
model.add(keras.layers.Dense(10, activation=keras.activations.elu, input_dim=2))
model.add(keras.layers.Dense(1, activation=keras.activations.sigmoid))
model.compile(optimizer=keras.optimizers.Adam(lr=0.05),
loss=keras.losses.mean_squared_error,
metrics=['accuracy'])
model.fit(x=Xs, y=Ys, batch_size=4, epochs=50, callbacks=[MyCallback()])
print("Training complete")
loss, acc = model.evaluate(Xs, Ys)
print(f"loss: {loss} - acc: {acc}")
predictions = model.predict(Xs)
print("predictions")
print(predictions)
Я уже пытался исправить проблему, связанную с ответом из this связанный с этим вопрос. Таким образом, добавив следующие строки кода после раздела import
:
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
Я получаю еще одно сообщение об ошибке, это полная трассировка стека:
2018-12-06 10:18:34.262 python[19319:371282] -[NSApplication _setup:]: unrecognized selector sent to instance 0x7ff2b07a3d00
2018-12-06 10:18:34.266 python[19319:371282] *** Terminating app due to uncaught exception 'NSInvalidArgumentException', reason: '-[NSApplication _setup:]: unrecognized selector sent to instance 0x7ff2b07a3d00'
*** First throw call stack:
(
0 CoreFoundation 0x00007fff2ccf0e65 __exceptionPreprocess + 256
1 libobjc.A.dylib 0x00007fff58d47720 objc_exception_throw + 48
2 CoreFoundation 0x00007fff2cd6e22d -[NSObject(NSObject) __retain_OA] + 0
3 CoreFoundation 0x00007fff2cc92820 ___forwarding___ + 1486
4 CoreFoundation 0x00007fff2cc921c8 _CF_forwarding_prep_0 + 120
5 libtk8.6.dylib 0x0000000b36aeb31d TkpInit + 413
6 libtk8.6.dylib 0x0000000b36a4317e Initialize + 2622
7 _tkinter.cpython-36m-darwin.so 0x0000000b3686ba16 _tkinter_create + 1174
8 python 0x000000010571c088 _PyCFunction_FastCallDict + 200
9 python 0x00000001057f2f4f call_function + 143
10 python 0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
11 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
12 python 0x00000001057f3b1c _PyFunction_FastCallDict + 364
13 python 0x000000010569a8b0 _PyObject_FastCallDict + 320
14 python 0x00000001056c1fe8 method_call + 136
15 python 0x00000001056a1efe PyObject_Call + 62
16 python 0x0000000105743385 slot_tp_init + 117
17 python 0x00000001057478c1 type_call + 241
18 python 0x000000010569a821 _PyObject_FastCallDict + 177
19 python 0x00000001056a2a67 _PyObject_FastCallKeywords + 327
20 python 0x00000001057f3048 call_function + 392
21 python 0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
22 python 0x00000001057f330c fast_function + 188
23 python 0x00000001057f2fac call_function + 236
24 python 0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
25 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
26 python 0x00000001057f3b1c _PyFunction_FastCallDict + 364
27 python 0x000000010569a8b0 _PyObject_FastCallDict + 320
28 python 0x00000001056c1fe8 method_call + 136
29 python 0x00000001056a1efe PyObject_Call + 62
30 python 0x00000001057f0cc0 _PyEval_EvalFrameDefault + 47360
31 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
32 python 0x00000001057f33ba fast_function + 362
33 python 0x00000001057f2fac call_function + 236
34 python 0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
35 python 0x00000001057f330c fast_function + 188
36 python 0x00000001057f2fac call_function + 236
37 python 0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
38 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
39 python 0x00000001057f33ba fast_function + 362
40 python 0x00000001057f2fac call_function + 236
41 python 0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
42 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
43 python 0x00000001057f33ba fast_function + 362
44 python 0x00000001057f2fac call_function + 236
45 python 0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
46 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
47 python 0x00000001057f33ba fast_function + 362
48 python 0x00000001057f2fac call_function + 236
49 python 0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
50 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
51 python 0x00000001057f33ba fast_function + 362
52 python 0x00000001057f2fac call_function + 236
53 python 0x00000001057f0abf _PyEval_EvalFrameDefault + 46847
54 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
55 python 0x00000001057f33ba fast_function + 362
56 python 0x00000001057f2fac call_function + 236
57 python 0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
58 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
59 python 0x00000001057f33ba fast_function + 362
60 python 0x00000001057f2fac call_function + 236
61 python 0x00000001057f0b6f _PyEval_EvalFrameDefault + 47023
62 python 0x00000001057e4209 _PyEval_EvalCodeWithName + 425
63 python 0x000000010583cd4c PyRun_FileExFlags + 252
64 python 0x000000010583c224 PyRun_SimpleFileExFlags + 372
65 python 0x0000000105862d66 Py_Main + 3734
66 python 0x0000000105692929 main + 313
67 libdyld.dylib 0x00007fff59e1608d start + 1
68 ??? 0x0000000000000002 0x0 + 2
)
libc++abi.dylib: terminating with uncaught exception of type NSException
Вот список связанных зависимостей, установленных в среде (для краткости не связанные зависимости опущены):
Name | Version Build
--------------------|----------------|----------------------
_tflow_select | 2.3.0 | mkl
blas | 1.0 | mkl
intel-openmp | 2019.1 | 144
matplotlib | 3.0.1 | py36h54f8f79_0
mkl | 2018.0.3 | 1
mkl_fft | 1.0.6 | py36hb8a8100_0
mkl_random | 1.0.1 | py36h5d10147_1
numpy | 1.15.4 | py36h6a91979_0
numpy-base | 1.15.4 | py36h8a80b8c_0
tensorboard | 1.12.0 | py36hdc36e2c_0
tensorflow | 1.12.0 | mkl_py36h2b2bbaf_0
tensorflow-base | 1.12.0 | mkl_py36h70e0e9a_0