В настоящее время я пытаюсь выяснить, как можно загрузить сохраненную модель H2O MOJO и использовать ее в кадре данных Spark без использования газированной воды.Подход, который я пытаюсь использовать, - это загрузить файл h2o-genmodel.jar
при запуске Spark, а затем использовать, а затем использовать интерфейс PySpark Py4J
для доступа к нему.Мой конкретный вопрос будет о том, как получить доступ к значениям, сгенерированным объектами py4j.java_gateway
.
Ниже приведен минимальный пример:
Модель поезда
import h2o
from h2o.estimators.random_forest import H2ORandomForestEstimator
import pandas as pd
import numpy as np
h2o.init()
features = pd.DataFrame(np.random.randn(6,3),columns=list('ABC'))
target = pd.DataFrame(pd.Series(["cat","dog","cat","dog","cat","dog"]), columns=["target"])
df = pd.concat([features, target], axis=1)
df_h2o = h2o.H2OFrame(df)
rf = H2ORandomForestEstimator()
rf.train(["A","B","C"],"target",training_frame=df_h2o, validation_frame=df_h2o)
Сохранить MOJO
model_path = rf.download_mojo(path="./mojo/", get_genmodel_jar=True)
print(model_path)
Загрузка MOJO
from pyspark.sql import SparkSession
spark = SparkSession.builder.config("spark.jars", "/home/ec2-user/Notebooks/mojo/h2o-genmodel.jar").getOrCreate()
MojoModel = spark._jvm.hex.genmodel.MojoModel
EasyPredictModelWrapper = spark._jvm.hex.genmodel.easy.EasyPredictModelWrapper
RowData = spark._jvm.hex.genmodel.easy.RowData
mojo = MojoModel.load(model_path)
easy_model = EasyPredictModelWrapper(mojo)
Прогнозирование на одном ряду данных
r = RowData()
r.put("A", -0.631123)
r.put("B", 0.711463)
r.put("C", -1.332257)
score = easy_model.predictBinomial(r).classProbabilities
Итак, до сих пор я смог добраться.Проблема в том, что мне трудно понять, что score
возвращает мне.print(score)
дает следующее: <py4j.java_gateway.JavaMember at 0x7fb2e09b4e80>
.Предположительно, должен быть путь к фактическим сгенерированным значениям из этого объекта, но как мне это сделать?