Подгонка звездного света с помощью 3D гауссов - PullRequest
0 голосов
/ 13 февраля 2019

У меня есть изображение звезды, скажем, 15 х 15 пикселей.Звездный свет можно смоделировать как трехмерный гауссов, что я и пытаюсь сделать.

Я использую функцию f (x, y) = A · exp (- [(x-xc) ^ 2 / 2σ ^ 2 + (y-yc) ^ 2 / 2σ ^ 2]) где:

  • xc, yc координаты предполагаемого центроида звезды
  • Значение пикселя в (xc, yc)

Алгоритм, который я реализовал, - это Левенберг-Марквардт.

Я застрял в следующем моменте в алгоритме LM -на каждой итерации - мне нужно вычислить вектор с разницей между моей выборкой и f (x, y).

Если я вычислю гауссову f (x, y), используя позиции пикселей (строка, столбец)поскольку (x, y), конечно, это будет везде 0, кроме около xc и yc.Что не правильно.

Я думал сделать нормализацию, позволяющую x и y варьироваться от 0 до 1 (конечно, нормализуя также xc и yc).

Может ли это быть хорошимподход?

Спасибо.Приветствия

1 Ответ

0 голосов
/ 13 февраля 2019

Вот пример графического трехмерного установщика поверхности, использующего скучную реализацию Левенверга-Марквардта в curve_fit (), этот пример должен быть легко адаптирован к вашим потребностям.

import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import  Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt

graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels


def func(data, a, b, c):
    X = data[0]
    Y = data[1]
    return a*X + b*Y + c


def SurfacePlot(func, data, fittedParameters):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

    matplotlib.pyplot.grid(True)
    axes = Axes3D(f)

    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    xModel = numpy.linspace(min(x_data), max(x_data), 20)
    yModel = numpy.linspace(min(y_data), max(y_data), 20)
    X, Y = numpy.meshgrid(xModel, yModel)

    Z = func(numpy.array([X, Y]), *fittedParameters)

    axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)

    axes.scatter(x_data, y_data, z_data) # show data along with plotted surface

    axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label
    axes.set_zlabel('Z Data') # Z axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def ScatterPlot(data):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

    matplotlib.pyplot.grid(True)
    axes = Axes3D(f)
    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    axes.scatter(x_data, y_data, z_data)

    axes.set_title('Scatter Plot (click-drag with mouse)')
    axes.set_xlabel('X Data')
    axes.set_ylabel('Y Data')
    axes.set_zlabel('Z Data')

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


if __name__ == "__main__":
    xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
    yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
    zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])

    data = [xData, yData, zData]

    initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example

    # here a non-linear surface fit is made with scipy's curve_fit()
    fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)

    ScatterPlot(data)
    SurfacePlot(func, data, fittedParameters)

    print('fitted prameters', fittedParameters)

    modelPredictions = func(data, *fittedParameters) 

    absError = modelPredictions - zData

    SE = numpy.square(absError) # squared errors
    MSE = numpy.mean(SE) # mean squared errors
    RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
    Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
    print('RMSE:', RMSE)
    print('R-squared:', Rsquared)
...