Существует онлайн-версия этого решения, которую вы можете попробовать сами.
Вот полное решение, использующее Sympy.Все, что вам нужно сделать, это ввести желаемые выражения в кортеж exprStr
в верхней части определения MyCalculator
, а затем все элементы удовлетворения зависимостей должны позаботиться о себе:
from sympy import S, solveset, Symbol
from sympy.parsing.sympy_parser import parse_expr
class MyCalculator:
# sympy assumes all expressions are set equal to zero
exprStr = (
'a*b - c',
'b + d - e',
'c/e - f'
)
# parse the expression strings into actual expressions
expr = tuple(parse_expr(es) for es in exprStr)
# create a dictionary to lookup expressions based on the symbols they depend on
exprDep = {}
for e in expr:
for s in e.free_symbols:
exprDep.setdefault(s, set()).add(e)
# create a set of the used symbols for input validation
validSymb = set(exprDep.keys())
def __init__(self, usefloat=False):
"""usefloat: if set, store values as standard Python floats (instead of the Sympy numeric types)
"""
self.vals = {}
self.numify = float if usefloat else lambda x: x
def set(self, symb, val, _exclude=None):
# ensure that symb is a sympy Symbol object
if isinstance(symb, str): symb = Symbol(symb)
if symb not in self.validSymb:
raise ValueError("Invalid input symbol.\n"
"symb: %s, validSymb: %s" % (symb, self.validSymb))
# initialize the set of excluded expressions, if needed
if _exclude is None: _exclude = set()
# record the updated value of symb
self.vals[symb] = self.numify(val)
# loop over all of the expressions that depend on symb
for e in self.exprDep[symb]:
if e in _exclude:
# we've already calculated an update for e in an earlier recursion, skip it
continue
# mark that e should be skipped in future recursions
_exclude.add(e)
# determine the symbol and value of the next update (if any)
nextsymbval = self.calc(symb, e)
if nextsymbval is not None:
# there is another symbol to update, recursively call self.set
self.set(*nextsymbval, _exclude)
def calc(self, symb, e):
# find knowns and unknowns of the expression
known = [s for s in e.free_symbols if s in self.vals]
unknown = [s for s in e.free_symbols if s not in known]
if len(unknown) > 1:
# too many unknowns, can't do anything with this expression right now
return None
elif len(unknown) == 1:
# solve for the single unknown
nextsymb = unknown[0]
else:
# solve for the first known that isn't the symbol that was just changed
nextsymb = known[0] if known[0] != symb else known[1]
# do the actual solving
sol = solveset(e, nextsymb, domain=S.Reals)
# evaluate the solution given the known values, then return a tuple of (next-symbol, result)
return nextsymb, sol.subs(self.vals).args[0]
def __str__(self):
return ' '.join(sorted('{} = {}'.format(k,v) for k,v in self.vals.items()))
Тестированиеit out:
mycalc = MyCalculator()
mycalc.set("a", 5)
mycalc.set("e", 7)
mycalc.set("c", 2)
print(mycalc)
Вывод:
a = 5 b = 2/5 c = 2 d = 33/5 e = 7 f = 2/7
Одна из замечательных особенностей Sympy заключается в том, что он использует рациональную математику, которая позволяет избежать любых странных ошибок округления, например, в 2/7
.Если вы предпочитаете получать результаты в виде стандартных значений Python float
, вы можете передать флаг usefloat
в MyCalculator
:
mycalc = MyCalculator(usefloat=True)
mycalc.set("a", 5)
mycalc.set("e", 7)
mycalc.set("c", 2)
print(mycalc)
Вывод:
a = 5.0 b = 0.4 c = 2.0 d = 6.6 e = 7.0 f = 0.2857142857142857