У меня есть простая реализация softmax:
softmax = np.exp(x) / np.sum(np.exp(x), axis=0)
Для x, установленного здесь как массив: https://justpaste.it/6wis7
Вы можете загрузить его как:
import numpy as np
x = np.as (just copy and paste the content (starting from array))
Я получаю:
softmax.mean(axis=0).shape
(100,) # now all elements must be 1.0 here, since its a probability
softmax.mean(axis=0) # all elements are not 1
array([0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158,
0.05263158, 0.05263158, 0.05263158, 0.05263158, 0.05263158])
Почему эта реализация неверна?Как это исправить?