Кажется, это то, что делает бумага, связанная ripi2
function main() {
const m4 = twgl.m4;
const gl = document.querySelector('canvas').getContext('webgl2', {alpha: false});
if (!gl) {
alert('need WebGL2');
return;
}
const ext = gl.getExtension('EXT_color_buffer_float');
if (!ext) {
alert('EXT_color_buffer_float');
return;
}
const vs = `
#version 300 es
layout(location=0) in vec4 position;
uniform mat4 u_matrix;
void main() {
gl_Position = u_matrix * position;
}
`;
const checkerFS = `
#version 300 es
precision highp float;
uniform vec4 color1;
uniform vec4 color2;
out vec4 fragColor;
void main() {
ivec2 grid = ivec2(gl_FragCoord.xy) / 32;
fragColor = mix(color1, color2, float((grid.x + grid.y) % 2));
}
`;
const transparentFS = `
#version 300 es
precision highp float;
uniform vec4 Ci;
out vec4 fragData[2];
float w(float z, float a) {
return a * max(pow(10.0,-2.0),3.0*pow(10.0,3.0)*pow((1.0 - z), 3.));
}
void main() {
float ai = Ci.a;
float zi = gl_FragCoord.z;
float wresult = w(zi, ai);
fragData[0] = vec4(Ci.rgb * wresult, ai);
fragData[1].r = ai * wresult;
}
`;
const compositeFS = `
#version 300 es
precision highp float;
uniform sampler2D ATexture;
uniform sampler2D BTexture;
out vec4 fragColor;
void main() {
vec4 accum = texelFetch(ATexture, ivec2(gl_FragCoord.xy), 0);
float r = accum.a;
accum.a = texelFetch(BTexture, ivec2(gl_FragCoord.xy), 0).r;
fragColor = vec4(accum.rgb / clamp(accum.a, 1e-4, 5e4), r);
}
`;
const checkerProgramInfo = twgl.createProgramInfo(gl, [vs, checkerFS]);
const transparentProgramInfo = twgl.createProgramInfo(gl, [vs, transparentFS]);
const compositeProgramInfo = twgl.createProgramInfo(gl, [vs, compositeFS]);
const bufferInfo = twgl.primitives.createXYQuadBufferInfo(gl);
const fbi = twgl.createFramebufferInfo(
gl,
[
{ internalFormat: gl.RGBA32F, minMag: gl.NEAREST },
{ internalFormat: gl.R32F, minMag: gl.NEAREST },
]);
function render(time) {
time *= 0.001;
twgl.setBuffersAndAttributes(gl, transparentProgramInfo, bufferInfo);
// drawOpaqueSurfaces();
gl.useProgram(checkerProgramInfo.program);
gl.disable(gl.BLEND);
twgl.setUniforms(checkerProgramInfo, {
color1: [.5, .5, .5, 1],
color2: [.7, .7, .7, 1],
u_matrix: m4.identity(),
});
twgl.drawBufferInfo(gl, bufferInfo);
twgl.bindFramebufferInfo(gl, fbi);
gl.drawBuffers([gl.COLOR_ATTACHMENT0, gl.COLOR_ATTACHMENT1]);
gl.clearBufferfv(gl.COLOR, 0, new Float32Array([0, 0, 0, 1]));
gl.clearBufferfv(gl.COLOR, 1, new Float32Array([1, 1, 1, 1]));
gl.depthMask(false);
gl.enable(gl.BLEND);
gl.blendFuncSeparate(gl.ONE, gl.ONE, gl.ZERO, gl.ONE_MINUS_SRC_ALPHA);
gl.useProgram(transparentProgramInfo.program);
// drawTransparentSurfaces();
const quads = [
[ .4, 0, 0, .4],
[ .4, .4, 0, .4],
[ 0, .4, 0, .4],
[ 0, .4, .4, .4],
[ 0, .0, .4, .4],
[ .4, .0, .4, .4],
];
quads.forEach((color, ndx) => {
const u = ndx / (quads.length - 1);
// change the order every second
const v = ((ndx + time | 0) % quads.length) / (quads.length - 1);
const xy = (u * 2 - 1) * .25;
const z = (v * 2 - 1) * .25;
let mat = m4.identity();
mat = m4.translate(mat, [xy, xy, z]);
mat = m4.scale(mat, [.3, .3, 1]);
twgl.setUniforms(transparentProgramInfo, {
Ci: color,
u_matrix: mat,
});
twgl.drawBufferInfo(gl, bufferInfo);
});
twgl.bindFramebufferInfo(gl, null);
gl.drawBuffers([gl.BACK]);
gl.blendFunc(gl.ONE_MINUS_SRC_ALPHA, gl.SRC_ALPHA);
gl.useProgram(compositeProgramInfo.program);
twgl.setUniforms(compositeProgramInfo, {
ATexture: fbi.attachments[0],
BTexture: fbi.attachments[1],
u_matrix: m4.identity(),
});
twgl.drawBufferInfo(gl, bufferInfo);
/* only needed if {alpha: false} not passed into getContext
gl.colorMask(false, false, false, true);
gl.clearColor(1, 1, 1, 1);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.colorMask(true, true, true, true);
*/
requestAnimationFrame(render);
}
requestAnimationFrame(render);
}
main();
<canvas></canvas>
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
Несколько замечаний:
- Используется WebGL2, но это должно быть возможно в WebGL1, вам придется изменитьшейдеры для использования GLSL ES 1.0.
- Используются текстуры с плавающей точкой.В статье упоминается, что вы также можете использовать текстуры наполовину.Обратите внимание, что рендеринг как текстур пополам, так и текстур с плавающей точкой является дополнительной функцией даже в WebGL2.Я считаю, что большинство мобильных устройств могут рендериться вдвое, но не плавать.
- Используется весовое уравнение 10 из статьи.В статье 4 весовых уравнения.7, 8, 9 и 10. Чтобы выполнить 7, 8 или 9, вам нужно будет передать пространство вида
z
из вершинного шейдера в фрагментный шейдер - Это переключает порядок рисования каждыйsecond
Код довольно прост.
Создает 3 шейдера.Один, чтобы нарисовать шахматную доску, чтобы у нас было что-то непрозрачное, чтобы видеть прозрачные вещи, нарисованные выше.Одним из них является прозрачный объект шейдера.Последний - шейдер, который создает прозрачные элементы в сцене.
Затем он создает 2 текстуры, текстуру RGBA32F с плавающей точкой и текстуру R32F с плавающей точкой (только для красного канала).Он прикрепляет их к кадровому буферу.(все это делается в функции 1, twgl.createFramebufferInfo
. Эта функция по умолчанию делает текстуры того же размера, что и холст.
Мы делаем один квад, который идет от -1 до + 1
Мы используем этот квад для рисования шахматной доски на холсте
Затем мы включаем смешивание, настраиваем уравнения смешивания, как сказано в документе, переключаемся на рендеринг в наш кадровый буфер, очищаем этот кадровый буфер.до 0,0,0,1 и 1. Это версия, в которой у нас нет отдельных функций смешивания для буфера отрисовки. Если вы переключаетесь на версию, которая может использовать отдельные функции смешивания для буфера отрисовки, вам необходимо очиститьразные значения и использовать другой шейдер (см. статью)
Используя наш прозрачный шейдер, мы в одном и том же квадрате нарисовали 6 прямоугольников одного сплошного цвета. Я просто использовал сплошной цвет, чтобы упростить его.разные Z и Z меняются каждую секунду, чтобы увидеть, как меняются результаты Z.
В шейдере Ci
- это цвет ввода.Это будет предварительно умноженный альфа-цвет согласно бумаге.Функция fragData [0] is the "accumulate" texture and
fragData [1] is the "revealage" texture and is only one channel, red. The
w` представляет уравнение 10 из статьи.
После того, как все 6 квадратов нарисованы, мы переключаемся обратно на рендеринг на холст и используем шейдер композиции.чтобы объединить результат прозрачности с непрозрачным содержимым холста.
Вот пример с некоторой геометрией.Различия:
- Используются уравнения (7) из бумаги вместо (10)
- . Чтобы сделать правильный zbuffering, буфер глубины должен использоваться совместно при непрозрачном и прозрачном рендеринге.,Так что есть 2 кадра буфера.Один буфер имеет глубину RGBA8 +, другой - глубину RGBA32F + R32F +.Буфер глубины используется совместно.
- Прозрачный рендеринг вычисляет простое освещение и затем использует результат как значение
Ci
из бумаги - После наложения прозрачного в непрозрачный нам все еще нужно скопироватьнепрозрачный в холст, чтобы увидеть результат
function main() {
const m4 = twgl.m4;
const v3 = twgl.v3;
const gl = document.querySelector('canvas').getContext('webgl2', {alpha: false});
if (!gl) {
alert('need WebGL2');
return;
}
const ext = gl.getExtension('EXT_color_buffer_float');
if (!ext) {
alert('EXT_color_buffer_float');
return;
}
const vs = `
#version 300 es
layout(location=0) in vec4 position;
layout(location=1) in vec3 normal;
uniform mat4 u_projection;
uniform mat4 u_modelView;
out vec4 v_viewPosition;
out vec3 v_normal;
void main() {
gl_Position = u_projection * u_modelView * position;
v_viewPosition = u_modelView * position;
v_normal = (u_modelView * vec4(normal, 0)).xyz;
}
`;
const checkerFS = `
#version 300 es
precision highp float;
uniform vec4 color1;
uniform vec4 color2;
out vec4 fragColor;
void main() {
ivec2 grid = ivec2(gl_FragCoord.xy) / 32;
fragColor = mix(color1, color2, float((grid.x + grid.y) % 2));
}
`;
const opaqueFS = `
#version 300 es
precision highp float;
in vec4 v_viewPosition;
in vec3 v_normal;
uniform vec4 u_color;
uniform vec3 u_lightDirection;
out vec4 fragColor;
void main() {
float light = abs(dot(normalize(v_normal), u_lightDirection));
fragColor = vec4(u_color.rgb * light, u_color.a);
}
`;
const transparentFS = `
#version 300 es
precision highp float;
uniform vec4 u_color;
uniform vec3 u_lightDirection;
in vec4 v_viewPosition;
in vec3 v_normal;
out vec4 fragData[2];
// eq (7)
float w(float z, float a) {
return a * max(
pow(10.0, -2.0),
min(
3.0 * pow(10.0, 3.0),
10.0 /
(pow(10.0, -5.0) +
pow(abs(z) / 5.0, 2.0) +
pow(abs(z) / 200.0, 6.0)
)
)
);
}
void main() {
float light = abs(dot(normalize(v_normal), u_lightDirection));
vec4 Ci = vec4(u_color.rgb * light, u_color.a);
float ai = Ci.a;
float zi = gl_FragCoord.z;
float wresult = w(zi, ai);
fragData[0] = vec4(Ci.rgb * wresult, ai);
fragData[1].r = ai * wresult;
}
`;
const compositeFS = `
#version 300 es
precision highp float;
uniform sampler2D ATexture;
uniform sampler2D BTexture;
out vec4 fragColor;
void main() {
vec4 accum = texelFetch(ATexture, ivec2(gl_FragCoord.xy), 0);
float r = accum.a;
accum.a = texelFetch(BTexture, ivec2(gl_FragCoord.xy), 0).r;
fragColor = vec4(accum.rgb / clamp(accum.a, 1e-4, 5e4), r);
}
`;
const blitFS = `
#version 300 es
precision highp float;
uniform sampler2D u_texture;
out vec4 fragColor;
void main() {
fragColor = texelFetch(u_texture, ivec2(gl_FragCoord.xy), 0);
}
`;
const checkerProgramInfo = twgl.createProgramInfo(gl, [vs, checkerFS]);
const opaqueProgramInfo = twgl.createProgramInfo(gl, [vs, opaqueFS]);
const transparentProgramInfo = twgl.createProgramInfo(gl, [vs, transparentFS]);
const compositeProgramInfo = twgl.createProgramInfo(gl, [vs, compositeFS]);
const blitProgramInfo = twgl.createProgramInfo(gl, [vs, blitFS]);
const xyQuadVertexArrayInfo = makeVAO(checkerProgramInfo, twgl.primitives.createXYQuadBufferInfo(gl));
const sphereVertexArrayInfo = makeVAO(transparentProgramInfo, twgl.primitives.createSphereBufferInfo(gl, 1, 16, 12));
const cubeVertexArrayInfo = makeVAO(opaqueProgramInfo, twgl.primitives.createCubeBufferInfo(gl, 1, 1));
function makeVAO(programInfo, bufferInfo) {
return twgl.createVertexArrayInfo(gl, programInfo, bufferInfo);
}
// In order to do proper zbuffering we need to share
// the depth buffer
const opaqueAttachments = [
{ internalFormat: gl.RGBA8, minMag: gl.NEAREST },
{ format: gl.DEPTH_COMPONENT16, minMag: gl.NEAREST },
];
const opaqueFBI = twgl.createFramebufferInfo(gl, opaqueAttachments);
const transparentAttachments = [
{ internalFormat: gl.RGBA32F, minMag: gl.NEAREST },
{ internalFormat: gl.R32F, minMag: gl.NEAREST },
{ format: gl.DEPTH_COMPONENT16, minMag: gl.NEAREST, attachment: opaqueFBI.attachments[1] },
];
const transparentFBI = twgl.createFramebufferInfo(gl, transparentAttachments);
function render(time) {
time *= 0.001;
if (twgl.resizeCanvasToDisplaySize(gl.canvas)) {
// if the canvas is resized also resize the framebuffer
// attachments (the depth buffer will be resized twice
// but I'm too lazy to fix it)
twgl.resizeFramebufferInfo(gl, opaqueFBI, opaqueAttachments);
twgl.resizeFramebufferInfo(gl, transparentFBI, transparentAttachments);
}
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const fov = 45 * Math.PI / 180;
const zNear = 0.1;
const zFar = 500;
const projection = m4.perspective(fov, aspect, zNear, zFar);
const eye = [0, 0, -5];
const target = [0, 0, 0];
const up = [0, 1, 0];
const camera = m4.lookAt(eye, target, up);
const view = m4.inverse(camera);
const lightDirection = v3.normalize([1, 3, 5]);
twgl.bindFramebufferInfo(gl, opaqueFBI);
gl.drawBuffers([gl.COLOR_ATTACHMENT0]);
gl.depthMask(true);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.bindVertexArray(xyQuadVertexArrayInfo.vertexArrayObject);
// drawOpaqueSurfaces();
// draw checkerboard
gl.useProgram(checkerProgramInfo.program);
gl.disable(gl.DEPTH_TEST);
gl.disable(gl.BLEND);
twgl.setUniforms(checkerProgramInfo, {
color1: [.5, .5, .5, 1],
color2: [.7, .7, .7, 1],
u_projection: m4.identity(),
u_modelView: m4.identity(),
});
twgl.drawBufferInfo(gl, xyQuadVertexArrayInfo);
// draw a cube with depth buffer
gl.enable(gl.DEPTH_TEST);
{
gl.useProgram(opaqueProgramInfo.program);
gl.bindVertexArray(cubeVertexArrayInfo.vertexArrayObject);
let mat = view;
mat = m4.rotateX(mat, time * .1);
mat = m4.rotateY(mat, time * .2);
mat = m4.scale(mat, [1.5, 1.5, 1.5]);
twgl.setUniforms(opaqueProgramInfo, {
u_color: [1, .5, .2, 1],
u_lightDirection: lightDirection,
u_projection: projection,
u_modelView: mat,
});
twgl.drawBufferInfo(gl, cubeVertexArrayInfo);
}
twgl.bindFramebufferInfo(gl, transparentFBI);
gl.drawBuffers([gl.COLOR_ATTACHMENT0, gl.COLOR_ATTACHMENT1]);
// these values change if using separate blend functions
// per attachment (something WebGL2 does not support)
gl.clearBufferfv(gl.COLOR, 0, new Float32Array([0, 0, 0, 1]));
gl.clearBufferfv(gl.COLOR, 1, new Float32Array([1, 1, 1, 1]));
gl.depthMask(false); // don't write to depth buffer (but still testing)
gl.enable(gl.BLEND);
// this changes if using separate blend functions per attachment
gl.blendFuncSeparate(gl.ONE, gl.ONE, gl.ZERO, gl.ONE_MINUS_SRC_ALPHA);
gl.useProgram(transparentProgramInfo.program);
gl.bindVertexArray(sphereVertexArrayInfo.vertexArrayObject);
// drawTransparentSurfaces();
const spheres = [
[ .4, 0, 0, .4],
[ .4, .4, 0, .4],
[ 0, .4, 0, .4],
[ 0, .4, .4, .4],
[ 0, .0, .4, .4],
[ .4, .0, .4, .4],
];
spheres.forEach((color, ndx) => {
const u = ndx + 2;
let mat = view;
mat = m4.rotateX(mat, time * u * .1);
mat = m4.rotateY(mat, time * u * .2);
mat = m4.translate(mat, [0, 0, 1 + ndx * .1]);
twgl.setUniforms(transparentProgramInfo, {
u_color: color,
u_lightDirection: lightDirection,
u_projection: projection,
u_modelView: mat,
});
twgl.drawBufferInfo(gl, sphereVertexArrayInfo);
});
// composite transparent results with opaque
twgl.bindFramebufferInfo(gl, opaqueFBI);
gl.drawBuffers([gl.COLOR_ATTACHMENT0]);
gl.disable(gl.DEPTH_TEST);
gl.blendFunc(gl.ONE_MINUS_SRC_ALPHA, gl.SRC_ALPHA);
gl.useProgram(compositeProgramInfo.program);
gl.bindVertexArray(xyQuadVertexArrayInfo.vertexArrayObject);
twgl.setUniforms(compositeProgramInfo, {
ATexture: transparentFBI.attachments[0],
BTexture: transparentFBI.attachments[1],
u_projection: m4.identity(),
u_modelView: m4.identity(),
});
twgl.drawBufferInfo(gl, xyQuadVertexArrayInfo);
/* only needed if {alpha: false} not passed into getContext
gl.colorMask(false, false, false, true);
gl.clearColor(1, 1, 1, 1);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.colorMask(true, true, true, true);
*/
// draw opaque color buffer into canvas
// could probably use gl.blitFramebuffer
gl.disable(gl.BLEND);
twgl.bindFramebufferInfo(gl, null);
gl.useProgram(blitProgramInfo.program);
gl.bindVertexArray(xyQuadVertexArrayInfo.vertexArrayObject);
twgl.setUniforms(blitProgramInfo, {
u_texture: opaqueFBI.attachments[0],
u_projection: m4.identity(),
u_modelView: m4.identity(),
});
twgl.drawBufferInfo(gl, xyQuadVertexArrayInfo);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
}
main();
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<canvas></canvas>
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>
Мне кажется, что вместо того, чтобы использовать стандартное смешивание OpenGL для последних 2 шагов (составной, затем блиц), мы могли бы изменить составной шейдер, чтобы онберет 3 текстуры (ATexutre, BTexture, opaqueTexture) и смешивается в шейдере, выводя непосредственно на холст.Это было бы быстрее.
function main() {
const m4 = twgl.m4;
const v3 = twgl.v3;
const gl = document.querySelector('canvas').getContext('webgl2', {alpha: false});
if (!gl) {
alert('need WebGL2');
return;
}
const ext = gl.getExtension('EXT_color_buffer_float');
if (!ext) {
alert('EXT_color_buffer_float');
return;
}
const vs = `
#version 300 es
layout(location=0) in vec4 position;
layout(location=1) in vec3 normal;
uniform mat4 u_projection;
uniform mat4 u_modelView;
out vec4 v_viewPosition;
out vec3 v_normal;
void main() {
gl_Position = u_projection * u_modelView * position;
v_viewPosition = u_modelView * position;
v_normal = (u_modelView * vec4(normal, 0)).xyz;
}
`;
const checkerFS = `
#version 300 es
precision highp float;
uniform vec4 color1;
uniform vec4 color2;
out vec4 fragColor;
void main() {
ivec2 grid = ivec2(gl_FragCoord.xy) / 32;
fragColor = mix(color1, color2, float((grid.x + grid.y) % 2));
}
`;
const opaqueFS = `
#version 300 es
precision highp float;
in vec4 v_viewPosition;
in vec3 v_normal;
uniform vec4 u_color;
uniform vec3 u_lightDirection;
out vec4 fragColor;
void main() {
float light = abs(dot(normalize(v_normal), u_lightDirection));
fragColor = vec4(u_color.rgb * light, u_color.a);
}
`;
const transparentFS = `
#version 300 es
precision highp float;
uniform vec4 u_color;
uniform vec3 u_lightDirection;
in vec4 v_viewPosition;
in vec3 v_normal;
out vec4 fragData[2];
// eq (7)
float w(float z, float a) {
return a * max(
pow(10.0, -2.0),
min(
3.0 * pow(10.0, 3.0),
10.0 /
(pow(10.0, -5.0) +
pow(abs(z) / 5.0, 2.0) +
pow(abs(z) / 200.0, 6.0)
)
)
);
}
void main() {
float light = abs(dot(normalize(v_normal), u_lightDirection));
vec4 Ci = vec4(u_color.rgb * light, u_color.a);
float ai = Ci.a;
float zi = gl_FragCoord.z;
float wresult = w(zi, ai);
fragData[0] = vec4(Ci.rgb * wresult, ai);
fragData[1].r = ai * wresult;
}
`;
const compositeFS = `
#version 300 es
precision highp float;
uniform sampler2D ATexture;
uniform sampler2D BTexture;
uniform sampler2D opaqueTexture;
out vec4 fragColor;
void main() {
vec4 accum = texelFetch(ATexture, ivec2(gl_FragCoord.xy), 0);
float r = accum.a;
accum.a = texelFetch(BTexture, ivec2(gl_FragCoord.xy), 0).r;
vec4 transparentColor = vec4(accum.rgb / clamp(accum.a, 1e-4, 5e4), r);
vec4 opaqueColor = texelFetch(opaqueTexture, ivec2(gl_FragCoord.xy), 0);
// gl.blendFunc(gl.ONE_MINUS_SRC_ALPHA, gl.SRC_ALPHA);
fragColor = transparentColor * (1. - r) + opaqueColor * r;
}
`;
const checkerProgramInfo = twgl.createProgramInfo(gl, [vs, checkerFS]);
const opaqueProgramInfo = twgl.createProgramInfo(gl, [vs, opaqueFS]);
const transparentProgramInfo = twgl.createProgramInfo(gl, [vs, transparentFS]);
const compositeProgramInfo = twgl.createProgramInfo(gl, [vs, compositeFS]);
const xyQuadVertexArrayInfo = makeVAO(checkerProgramInfo, twgl.primitives.createXYQuadBufferInfo(gl));
const sphereVertexArrayInfo = makeVAO(transparentProgramInfo, twgl.primitives.createSphereBufferInfo(gl, 1, 16, 12));
const cubeVertexArrayInfo = makeVAO(opaqueProgramInfo, twgl.primitives.createCubeBufferInfo(gl, 1, 1));
function makeVAO(programInfo, bufferInfo) {
return twgl.createVertexArrayInfo(gl, programInfo, bufferInfo);
}
// In order to do proper zbuffering we need to share
// the depth buffer
const opaqueAttachments = [
{ internalFormat: gl.RGBA8, minMag: gl.NEAREST },
{ format: gl.DEPTH_COMPONENT16, minMag: gl.NEAREST },
];
const opaqueFBI = twgl.createFramebufferInfo(gl, opaqueAttachments);
const transparentAttachments = [
{ internalFormat: gl.RGBA32F, minMag: gl.NEAREST },
{ internalFormat: gl.R32F, minMag: gl.NEAREST },
{ format: gl.DEPTH_COMPONENT16, minMag: gl.NEAREST, attachment: opaqueFBI.attachments[1] },
];
const transparentFBI = twgl.createFramebufferInfo(gl, transparentAttachments);
function render(time) {
time *= 0.001;
if (twgl.resizeCanvasToDisplaySize(gl.canvas)) {
// if the canvas is resized also resize the framebuffer
// attachments (the depth buffer will be resized twice
// but I'm too lazy to fix it)
twgl.resizeFramebufferInfo(gl, opaqueFBI, opaqueAttachments);
twgl.resizeFramebufferInfo(gl, transparentFBI, transparentAttachments);
}
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const fov = 45 * Math.PI / 180;
const zNear = 0.1;
const zFar = 500;
const projection = m4.perspective(fov, aspect, zNear, zFar);
const eye = [0, 0, -5];
const target = [0, 0, 0];
const up = [0, 1, 0];
const camera = m4.lookAt(eye, target, up);
const view = m4.inverse(camera);
const lightDirection = v3.normalize([1, 3, 5]);
twgl.bindFramebufferInfo(gl, opaqueFBI);
gl.drawBuffers([gl.COLOR_ATTACHMENT0]);
gl.depthMask(true);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
gl.bindVertexArray(xyQuadVertexArrayInfo.vertexArrayObject);
// drawOpaqueSurfaces();
// draw checkerboard
gl.useProgram(checkerProgramInfo.program);
gl.disable(gl.DEPTH_TEST);
gl.disable(gl.BLEND);
twgl.setUniforms(checkerProgramInfo, {
color1: [.5, .5, .5, 1],
color2: [.7, .7, .7, 1],
u_projection: m4.identity(),
u_modelView: m4.identity(),
});
twgl.drawBufferInfo(gl, xyQuadVertexArrayInfo);
// draw a cube with depth buffer
gl.enable(gl.DEPTH_TEST);
{
gl.useProgram(opaqueProgramInfo.program);
gl.bindVertexArray(cubeVertexArrayInfo.vertexArrayObject);
let mat = view;
mat = m4.rotateX(mat, time * .1);
mat = m4.rotateY(mat, time * .2);
mat = m4.scale(mat, [1.5, 1.5, 1.5]);
twgl.setUniforms(opaqueProgramInfo, {
u_color: [1, .5, .2, 1],
u_lightDirection: lightDirection,
u_projection: projection,
u_modelView: mat,
});
twgl.drawBufferInfo(gl, cubeVertexArrayInfo);
}
twgl.bindFramebufferInfo(gl, transparentFBI);
gl.drawBuffers([gl.COLOR_ATTACHMENT0, gl.COLOR_ATTACHMENT1]);
// these values change if using separate blend functions
// per attachment (something WebGL2 does not support)
gl.clearBufferfv(gl.COLOR, 0, new Float32Array([0, 0, 0, 1]));
gl.clearBufferfv(gl.COLOR, 1, new Float32Array([1, 1, 1, 1]));
gl.depthMask(false); // don't write to depth buffer (but still testing)
gl.enable(gl.BLEND);
// this changes if using separate blend functions per attachment
gl.blendFuncSeparate(gl.ONE, gl.ONE, gl.ZERO, gl.ONE_MINUS_SRC_ALPHA);
gl.useProgram(transparentProgramInfo.program);
gl.bindVertexArray(sphereVertexArrayInfo.vertexArrayObject);
// drawTransparentSurfaces();
const spheres = [
[ .4, 0, 0, .4],
[ .4, .4, 0, .4],
[ 0, .4, 0, .4],
[ 0, .4, .4, .4],
[ 0, .0, .4, .4],
[ .4, .0, .4, .4],
];
spheres.forEach((color, ndx) => {
const u = ndx + 2;
let mat = view;
mat = m4.rotateX(mat, time * u * .1);
mat = m4.rotateY(mat, time * u * .2);
mat = m4.translate(mat, [0, 0, 1 + ndx * .1]);
twgl.setUniforms(transparentProgramInfo, {
u_color: color,
u_lightDirection: lightDirection,
u_projection: projection,
u_modelView: mat,
});
twgl.drawBufferInfo(gl, sphereVertexArrayInfo);
});
// composite transparent results with opaque
twgl.bindFramebufferInfo(gl, null);
gl.disable(gl.DEPTH_TEST);
gl.disable(gl.BLEND);
gl.useProgram(compositeProgramInfo.program);
gl.bindVertexArray(xyQuadVertexArrayInfo.vertexArrayObject);
twgl.setUniforms(compositeProgramInfo, {
ATexture: transparentFBI.attachments[0],
BTexture: transparentFBI.attachments[1],
opaqueTexture: opaqueFBI.attachments[0],
u_projection: m4.identity(),
u_modelView: m4.identity(),
});
twgl.drawBufferInfo(gl, xyQuadVertexArrayInfo);
/* only needed if {alpha: false} not passed into getContext
gl.colorMask(false, false, false, true);
gl.clearColor(1, 1, 1, 1);
gl.clear(gl.COLOR_BUFFER_BIT);
gl.colorMask(true, true, true, true);
*/
requestAnimationFrame(render);
}
requestAnimationFrame(render);
}
main();
body { margin: 0; }
canvas { width: 100vw; height: 100vh; display: block; }
<canvas></canvas>
<script src="https://twgljs.org/dist/4.x/twgl-full.min.js"></script>