Другой вариант, используя seq_along
let[!is.na(let)] <- seq_along(let[!is.na(let)])
as.numeric(let)
# [1] 1 NA NA 2 3 4 NA 5 NA 6
эталон
library(microbenchmark)
n <- 1e7
let_long <- seq_len(n)
set.seed(1)
let_long[sample(seq_len(n), size = 1e6)] <- NA
benchmark <- microbenchmark(
Karolis = Karolis(let_long),
Markus = Markus(let_long),
Snoram = Snoram(let_long),
Alexandra = Alexandra(let_long),
Frank = Frank(let_long) # see comment under Snoram's answer
)
Чтобы получить приведенную ниже диаграмму, введите autoplot(benchmark)
.
#Unit: milliseconds
# expr min lq mean median uq max neval
# Karolis 1042.0708 1216.6241 1314.9765 1290.3428 1374.7090 1807.4604 100
# Markus 210.3860 259.9957 310.0776 293.8244 363.4317 488.2171 100
# Snoram 714.4514 938.5760 1033.6168 1029.8205 1104.5614 1546.3733 100
# Alexandra 4317.5206 4470.2634 4665.9004 4603.6446 4771.5768 6495.3595 100
# Frank 103.3624 126.2842 166.7555 159.3568 190.5186 290.0422 100
Функции, сравниваемые до настоящего времени.
Karolis <- function(x) {
match(seq_along(x), which(!is.na(x)))
}
Markus <- function(x) {
x[!is.na(x)] <- seq_along(x[!is.na(x)])
as.numeric(x)
}
Snoram <- function(x) {
ifelse(is.na(x), NA, cumsum(!is.na(x)))
}
Alexandra <- function(x) {
j = 0
for (i in 1:length(x)) {
if(is.na(x[i]) == FALSE){
j = j + 1
x[i] <- j
}
}
as.numeric(x)
}
Frank <- function(x) {
replace(cumsum(!is.na(x)), is.na(x), NA)
}