@ Даниэль Лаббе ответил за начальные требования, и это было правильно.+1 ему за метод shift ().Затем требования пользователей изменились.Итак, вот мой ответ на последние требования.
#import pandas for managing data with dataframe
import pandas as pd
#import tabulate to print your data frame as table
from tabulate import tabulate
#Create a data dictionary
myData={'Numbers':[1000,1002,1003,0,0,0,0,0,0],'Date':['12/1/2018','12/2/2018','12/3/2018','12/4/2018','12/5/2018','12/6/2018','12/7/2018','12/8/2018','12/9/2018'],'Mean':[1,0,0.5,0.6,0.4,0.1,-0.7,0.2,-0.1]}
#Create a data frame from the data dictionary using pandas. User mentioned that the data is already in the
#pandas data frame
myDataFrame=pd.DataFrame(myData)
#Print your final table (just pretty print)
print(tabulate(myDataFrame, headers='keys', tablefmt='psql'))
#Declare a list
MultiplicationList=[]
#Declare a constant
StorePreviousValue=0
for i in range(0,len(myDataFrame['Numbers'])):
#If it is the first row then use the Number
if i==0:
#Append the value to the list
MultiplicationList.append(myDataFrame['Numbers'][i])
else:
#If it is not the first row, and the value in the first column of the previous row is '0'
#multiply Mean with the previous multiplication result
if myDataFrame['Numbers'][i-1]==0:
StorePreviousValue=StorePreviousValue*myDataFrame['Mean'][i]
#If it is not the first row, and the value in the first column of the previous row is not '0'
#(should probably say greate than '0', but the question is not clear about that), then
#multiply Mean with the Number in the first column of the previous row
else:
StorePreviousValue=myDataFrame['Numbers'][i-1]*myDataFrame['Mean'][i]
#Append the value to the list
MultiplicationList.append(StorePreviousValue)
#Create a new column in the data frame and pass the list as the value
myDataFrame['Multiplication']=MultiplicationList
#Print your final table (just pretty print)
print(tabulate(myDataFrame, headers='keys', tablefmt='psql'))
Вот вывод
+----+-----------+-----------+--------+
| | Numbers | Date | Mean |
|----+-----------+-----------+--------|
| 0 | 1000 | 12/1/2018 | 1 |
| 1 | 1002 | 12/2/2018 | 0 |
| 2 | 1003 | 12/3/2018 | 0.5 |
| 3 | 0 | 12/4/2018 | 0.6 |
| 4 | 0 | 12/5/2018 | 0.4 |
| 5 | 0 | 12/6/2018 | 0.1 |
| 6 | 0 | 12/7/2018 | -0.7 |
| 7 | 0 | 12/8/2018 | 0.2 |
| 8 | 0 | 12/9/2018 | -0.1 |
+----+-----------+-----------+--------+
+----+-----------+-----------+--------+------------------+
| | Numbers | Date | Mean | Multiplication |
|----+-----------+-----------+--------+------------------|
| 0 | 1000 | 12/1/2018 | 1 | 1000 |
| 1 | 1002 | 12/2/2018 | 0 | 0 |
| 2 | 1003 | 12/3/2018 | 0.5 | 501 |
| 3 | 0 | 12/4/2018 | 0.6 | 601.8 |
| 4 | 0 | 12/5/2018 | 0.4 | 240.72 |
| 5 | 0 | 12/6/2018 | 0.1 | 24.072 |
| 6 | 0 | 12/7/2018 | -0.7 | -16.8504 |
| 7 | 0 | 12/8/2018 | 0.2 | -3.37008 |
| 8 | 0 | 12/9/2018 | -0.1 | 0.337008 |
+----+-----------+-----------+--------+------------------+
Если у вас нет панд или таблиц, пожалуйста, установите с помощью pip install pandas pipinstall tabulate
Если вы не знакомы с pip, поищите его в Google.Этот ответ предполагает, что вы знаете, как читать из файла и создавать свой словарь данных.Если вы этого не сделаете, это будет еще один вопрос.