Я получаю следующее предупреждение, используя оптимизацию SciPy fmin_bfgs()
в NeuralNetwork
.Все должно быть ясно и просто, следуя алгоритму Backpropagation
.
1 Примеры обучения Feed Forward.
2 Вычислите срок ошибки для каждого юнита.
3 Накопительный градиент (для первого примера I 'я пропускаю термин регуляризации).
Starting Loss: 7.26524579601
Check gradient: 2.02493576268
Warning: Desired error not necessarily achieved due to precision loss.
Current function value: 5.741300
Iterations: 3
Function evaluations: 104
Gradient evaluations: 92
Trained Loss: 5.74130012926
Я только что выполнил ту же задачу с MATLAB, который успешно выполнялся с функциями fmin
для оптимизации, но не могу понять, что я пропустил в реализации Python.Как видите, даже scipy.optimize.check_grad
возвращает слишком большое значение.
def feed_forward(x, theta1, theta2):
hidden_dot = np.dot(add_bias(x), np.transpose(theta1))
hidden_p = sigmoid(hidden_dot)
p = sigmoid(np.dot(add_bias(hidden_p), np.transpose(theta2)))
return hidden_dot, hidden_p, p
def cost(thetas, x, y, hidden, lam):
theta1, theta2 = get_theta_from(thetas, x, y, hidden)
_, _, p = feed_forward(x, theta1, theta2)
# regularization = (lam / (len(x) * 2)) * (
# np.sum(np.square(np.delete(theta1, 0, 1)))
# + np.sum(np.square(np.delete(theta2, 0, 1))))
complete = -1 * np.dot(np.transpose(y), np.log(p)) \
- np.dot(np.transpose(1 - y), np.log(1 - p))
return np.sum(complete) / len(x) # + regularization
def vector(z):
# noinspection PyUnresolvedReferences
return np.reshape(z, (np.shape(z)[0], 1))
def gradient(thetas, x, y, hidden, lam):
theta1, theta2 = get_theta_from(thetas, x, y, hidden)
hidden_dot, hidden_p, p = feed_forward(x, theta1, theta2)
error_o = p - y
error_h = np.multiply(np.dot(
error_o, np.delete(theta2, 0, 1)), sigmoid_gradient(hidden_dot))
x = add_bias(x)
hidden_p = add_bias(hidden_p)
theta1_grad, theta2_grad = \
np.zeros(theta1.shape[::-1]), np.zeros(theta2.shape[::-1])
records = y.shape[0]
for i in range(records):
theta1_grad = theta1_grad + np.dot(
vector(x[i]), np.transpose(vector(error_h[i])))
theta2_grad = theta2_grad + np.dot(
vector(hidden_p[i]), np.transpose(vector(error_o[i])))
theta1_grad = np.transpose(
theta1_grad / records) # + (lam / records * theta1)
theta2_grad = np.transpose(
theta2_grad / records) # + (lam / records * theta2)
return np.append(theta1_grad, theta2_grad)
def get_theta_shapes(x, y, hidden):
return (hidden, x.shape[1] + 1), \
(y.shape[1], hidden + 1)
def get_theta_from(thetas, x, y, hidden):
t1_s, t2_s = get_theta_shapes(x, y, hidden)
split = t1_s[0] * t1_s[1]
theta1 = np.reshape(thetas[:split], t1_s)
theta2 = np.reshape(thetas[split:], t2_s)
return theta1, theta2
def train(x, y, hidden_size, lam):
y = get_binary_y(y)
t1_s, t2_s = get_theta_shapes(x, y, hidden_size)
thetas = np.append(
rand_init(t1_s[0], t1_s[1]),
rand_init(t2_s[0], t2_s[1]))
initial_cost = cost(thetas, x, y, hidden_size, lam)
print("Starting Loss: " + str(initial_cost))
check_grad1 = scipy.optimize.check_grad(
cost, gradient, thetas, x, y, hidden_size, lam)
print("Check gradient: " + str(check_grad1))
trained_theta = scipy.optimize.fmin_bfgs(
cost, thetas, fprime=gradient, args=(x, y, hidden_size, lam))
print("Trained Loss: " +
str(cost(trained_theta, x, y, hidden_size, lam)))