У меня 608 наблюдений за спутниковыми метками черепах.Я хочу смоделировать их с данными об окружающей среде, которые включают температуру поверхности моря, текущую скорость, скорость ветра и т. Д. Конечно, как данные мечения, так и данные об окружающей среде изменяются в пространстве и во времени.Я сгенерировал данные псевдо-отсутствия, используя приведенный ниже код, который я адаптировал с здесь .Однако теперь мне пришло в голову, что сгенерированные мной точки данных являются только пространственными выборками.Есть ли способ, как я могу отредактировать этот код для временной выборки, чтобы у моего результирующего csv была дата / время для каждой точки, чтобы я мог сопоставить его с моими данными об окружающей среде?Или я могу попробовать другой пакет, который позволил бы мне это сделать?
dir.create(path = "data")
library("sp")
library("raster")
library("maptools")
library("rgdal")
library("dismo")
bioclim.data <- getData(name = "worldclim",
var = "bio",
res = 2.5,
path = "data/")
# Read in observations
obs.data <- read.csv(file = "data/Presence.csv")
# Determine geographic extent of data
max.lat <- ceiling(max(obs.data$Latitude))
min.lat <- floor(min(obs.data$Latitude))
max.lon <- ceiling(max(obs.data$Longitude))
min.lon <- floor(min(obs.data$Longitude))
geographic.extent <- extent(x = c(min.lon, max.lon, min.lat, max.lat))
# Use the bioclim data files for sampling resolution
bil.files <- list.files(path = "data/wc2-5",
pattern = "*.bil$",
full.names = TRUE)
# only need one file, so use the first one in the list of .bil files
mask <- raster(bil.files[1])
# Randomly sample points (same number as our observed points)
background <- randomPoints(mask = mask, # Provides resolution of sampling points
n = nrow(obs.data), # Number of random points
ext = geographic.extent, # Spatially restricts sampling
extf = 1.25) # Expands sampling a little bit
write.csv(background, "pseudo-absence.csv")