Потери в двоичной классификации растут с использованием метода оптимизации градиентного спуска - PullRequest
0 голосов
/ 14 октября 2018

Это моя программа для двоичной классификации с использованием метода градиентного спуска.Я не уверен в своей функции потери.Ошибка в моем случае возрастает при построении графика

enter image description here

def sigmoid_activation(x):
    return 1.0 / (1 + np.exp(-x))

def predict(testX, W):
    preds= sigmoid_activation(np.dot(testX,W))
    # apply a step function to threshold (=0.5) the outputs to binary class 
#labels
    #start your code here
    for i in range(len(preds)):
        if preds[i]<0.5:
            p.append(0)
        if preds[i]>=0.5:
            p.append(1) 

    return p

epochs = 50
alpha = 0.01

(X,y)=make_moons(n_samples=1000, noise = 0.15)

y=y.reshape(y.shape[0],1)

X = np.c_[X, np.ones((X.shape[0]))]

(trainX, testX, trainY, testY) = train_test_split(X, y,
test_size=0.5, random_state=42)

print("[INFO] training...")
W = np.random.randn(X.shape[1], 1)
losses = []
for epoch in np.arange(0, epochs):

    #start your code here
    Z=np.dot(trainX, W)
    yhat= sigmoid_activation(Z)

    error=trainY-yhat
    loss = np.sum(error ** 2)
    losses.append(loss)
    gradient = trainX.T.dot(error) / trainX.shape[0]
    W= W-alpha*gradient      #moving in -ve direction





    # check to see if an update should be displayed
    if epoch == 0 or (epoch + 1) % 5 == 0:
        print("[INFO] epoch={}, loss={:.7f}".format(int(epoch + 1),
            loss))

# evaluate our model
print("[INFO] evaluating...")
preds = predict(testX, W)
print(classification_report(testY, preds))

# plot the (testing) classification data
plt.style.use("ggplot")
plt.figure()
plt.title("Data")
plt.scatter(testX[:, 0], testX[:, 1], marker="o", c=testY[:,0], s=30)

# construct a figure that plots the loss over time
plt.style.use("ggplot")
plt.figure()
plt.plot(np.arange(0, epochs), losses)
plt.title("Training Loss")
plt.xlabel("Epoch #")
plt.ylabel("Loss")
plt.show()
...