Я пытаюсь выполнить задачу по классификации системных вызовов.Код ниже вдохновлен проектом классификации текста.Мои системные вызовы представлены в виде последовательности целых чисел от 1 до 340. Я получил ошибку:
**valueError: input arrays should have the same number of samples as target arrays. Find 1 input samples and 0 target samples**.
Я не знаю, что делать, так как это мой первый раз Спасибо заранее
`
df = pd.read_csv("data.txt")
df_test = pd.read_csv("validation.txt")
#split arrays into train and test data (cross validation)
train_text, test_text, train_y, test_y = train_test_split(df,df,test_size = 0.2)
MAX_NB_WORDS = 5700
# get the raw text data
texts_train = train_text.astype(str)
texts_test = test_text.astype(str)
# finally, vectorize the text samples into a 2D integer tensor
tokenizer = Tokenizer(nb_words=MAX_NB_WORDS, char_level=False)
tokenizer.fit_on_texts(texts_train)
sequences = tokenizer.texts_to_sequences(texts_train)
sequences_test = tokenizer.texts_to_sequences(texts_test)
word_index = tokenizer.word_index
type(tokenizer.word_index), len(tokenizer.word_index)
index_to_word = dict((i, w) for w, i in tokenizer.word_index.items())
" ".join([index_to_word[i] for i in sequences[0]])
seq_lens = [len(s) for s in sequences]
MAX_SEQUENCE_LENGTH = 100
# pad sequences with 0s
x_train = pad_sequences(sequences, maxlen=MAX_SEQUENCE_LENGTH)
x_test = pad_sequences(sequences_test, maxlen=MAX_SEQUENCE_LENGTH)
#print('Shape of data train:', x_train.shape) #cela a donnée (1,100)
#print('Shape of data test tensor:', x_test.shape)
y_train = train_y
y_test = test_y
print('Shape of label tensor:', y_train.shape)
EMBEDDING_DIM = 32
N_CLASSES = 2
y_train = keras.utils.to_categorical( y_train , N_CLASSES )
sequence_input = Input(shape=(MAX_SEQUENCE_LENGTH,), dtype='float32')
embedding_layer = Embedding(MAX_NB_WORDS, EMBEDDING_DIM,
input_length=MAX_SEQUENCE_LENGTH,
trainable=True)
embedded_sequences = embedding_layer(sequence_input)
average = GlobalAveragePooling1D()(embedded_sequences)
predictions = Dense(N_CLASSES, activation='softmax')(average)
model = Model(sequence_input, predictions)
model.compile(loss='categorical_crossentropy',
optimizer='adam', metrics=['acc'])
model.fit(x_train, y_train, validation_split=0.1,
nb_epoch=10, batch_size=1)
output_test = model.predict(x_test)
print("test auc:", roc_auc_score(y_test,output_test[:,1]))
`