См. алгоритм Чайкина .
Алгоритм Чайкина - это геометрические алгоритмы, которые работают непосредственно с полигоном управления.Схема генерации кривой основана на «разрезании углов», когда алгоритм генерирует новый многоугольник управления, обрезая углы от исходного.
Рисунок ниже иллюстрирует эту идею, когда исходный многоугольник управления был преобразован во второй многоугольник(немного смещено) путем обрезания углов первой последовательности.
Вот пример реализации.
"""
polygoninterpolation.py
Chaikin's Algorith for curves
http://graphics.cs.ucdavis.edu/~joy/GeometricModelingLectures/Unit-7-Notes/Chaikins-Algorithm.pdf
"""
import math
import random
from graphics import *
class MultiLine:
def __init__(self, points=None, rgb_color=(255, 255, 255), width=1):
self.lines = []
if points is None:
self.points = []
else:
self.points = points
self._build_lines()
self.rgb_color = rgb_color
self.width = width
def add_point(self):
self.points.append(point)
def _build_lines(self):
for idx, point in enumerate(self.points[:-1]):
self.lines.append(Line(self.points[idx], self.points[idx + 1]))
def draw(self, win):
for line in self.lines:
line.setOutline(color_rgb(*self.rgb_color))
line.setWidth(self.width)
line.draw(win)
def get_chaikin(points, factor=4):
new_points = [] # [points[0]]
for idx in range(len(points) - 1):
p1, p2 = points[idx], points[idx+1]
p_one_qtr, p_three_qtr = get_quarter_points(p1, p2, factor)
new_points.append(p_one_qtr)
new_points.append(p_three_qtr)
return new_points # + [points[-1]] # for a closed polygon
def get_quarter_points(p1, p2, factor=4):
n = factor
qtr_x = (p2.x - p1.x) / n
qtr_y = (p2.y - p1.y) / n
return Point(p1.x + qtr_x, p1.y + qtr_y), \
Point(p1.x + (n-1) * qtr_x, p1.y + (n-1) * qtr_y)
win = GraphWin("My Window", 500, 500)
win.setBackground(color_rgb(0, 0, 0))
# points0 = [Point(250, 20),
# Point(20, 400),
# Point(480, 400)]
# points0 = [Point(20, 400),
# Point(35, 200),
# Point(250, 100),
# Point(400, 150),
# Point(450, 350),
# Point(380, 450)]
# points0 = [Point(20, 400),
# Point(35, 200),
# Point(250, 100),
# Point(400, 150),
# Point(220, 170),
# Point(310, 190),
# Point(180, 270),
# Point(450, 230),
# Point(440, 440),
# Point(380, 450)]
points0 = [Point(random.randrange(500), random.randrange(500)) for _ in range(random.randrange(3, 80))]
x_line0 = MultiLine(points0)
# x_line0.draw(win)
points1 = get_chaikin(points0)
x_line1 = MultiLine(points1, rgb_color=(200, 200, 200), width=1)
# x_line1.draw(win)
points2 = get_chaikin(points1)
x_line2 = MultiLine(points2, rgb_color=(200, 200, 200), width=1)
# x_line2.draw(win)
points3 = get_chaikin(points2)
x_line3 = MultiLine(points3, rgb_color=(200, 200, 200), width=1)
# x_line3.draw(win)
points4 = get_chaikin(points3)
x_line4 = MultiLine(points4, rgb_color=(200, 200, 200), width=1)
# x_line4.draw(win)
points5 = get_chaikin(points4)
x_line5 = MultiLine(points5, rgb_color=(200, 200, 200), width=1)
x_line5.draw(win)
# poly0 = Polygon(points0)
# poly0.setOutline(color_rgb(0, 255, 0))
# poly0.setWidth(1)
# poly0.draw(win)
#
# points1 = get_chaikin(points0 + [points0[0]])
# poly1 = Polygon(points1)
# poly1.setOutline(color_rgb(0, 255, 0))
# poly1.setWidth(1)
# poly1.draw(win)
#
# points2 = get_chaikin(points1 + [points1[0]])
# poly2 = Polygon(points2)
# poly2.setOutline(color_rgb(0, 255, 0))
# poly2.setWidth(1)
# poly2.draw(win)
#
# points3 = get_chaikin(points2 + [points2[0]])
# poly3 = Polygon(points3)
# poly3.setOutline(color_rgb(0, 255, 0))
# poly3.setWidth(1)
# poly3.draw(win)
#
# points4 = get_chaikin(points3 + [points3[0]])
# poly4 = Polygon(points4)
# poly4.setOutline(color_rgb(0, 255, 0))
# poly4.setWidth(1)
# poly4.draw(win)
#
# points5 = get_chaikin(points4 + [points4[0]])
# poly5 = Polygon(points5)
# poly5.setOutline(color_rgb(0, 255, 0))
# poly5.setWidth(2)
# poly5.draw(win)
print("done")
print(win.getMouse())
win.close()