Алгоритм Белларда для вычисления Пи - PullRequest
0 голосов
/ 16 октября 2018

Для университетского проекта я хотел реализовать алгоритм Белларда для вычисления n-й цифры числа пи в Фортране.Я наткнулся на этот вопрос на math.stackexchange: https://math.stackexchange.com/questions/1776840/confusion-with-bellards-algorithm-for-pi

С ответом на этот вопрос мне удалось реализовать код, но я не получил результат, и я не могу понять, что я 'Я делаю неправильно:

PROGRAM pi

IMPLICIT NONE

INTEGER :: find_number_of_primes, number_primes, last_digit, digit, N, &
eps, i, j, multiplicity, test
REAL :: log2, base, v_max, m, s, v, b, A, pi_sum
INTEGER, ALLOCATABLE :: primes(:)   

digit = 3
eps = 2
base = 10
N = INT((digit+eps)*log2(base))
pi_sum = 0

number_primes = find_number_of_primes(2*N)
ALLOCATE(primes(number_primes))
CALL get_primes(number_primes, primes)

DO i=1,SIZE(primes)
    v_max = INT(log(REAL(2*N))/log(REAL(primes(i))))
    m = primes(i)**v_max
    s = 0
    v = 0
    b = 1
    A = 1
    DO j = 1,(N)
        b = MOD((j/(primes(i)**multiplicity(digit, j)) * b), m)
        A = MOD((2*j-1)/(primes(i)**multiplicity(primes(i), (2*j-1)))*A, m)
        v = v - multiplicity(primes(i),j)+multiplicity(primes(i),(2*j-1))
        IF (v > 0) THEN
            s = MOD(s*j*b*(A**(-1))*a**(v_max-v), m)
        END IF
    END DO
    s = MOD(s * base**(digit-1), m)
    pi_sum = pi_sum + MOD((s/m), REAL(1))
END DO

PRINT*, pi_sum  

END PROGRAM

Пользовательские функции find_number_of_primes, get_primes, log2 и multiplicity работают как задумано.Первый находит число простых чисел в заданном интервале, второй возвращает простые числа в массиве, третий вычисляет

log_2(x) = log(x)/log(2) 

, а последний вычисляет кратность (я думаю, что это и есть)вызывается), проверяя, как часто второе число должно делиться на первое число, пока остальная часть деления больше не станет нулевой.Вот исходные коды:

Логарифм:

real function log2(x)
implicit none
real, intent(in) :: x

log2 = log(x) / log(2.)
end function

Нахождение количества простых чисел в интервале:

integer function find_number_of_primes(limit) result(number_primes)
implicit none
INTEGER, INTENT(IN) :: limit
INTEGER :: i, j
LOGICAL :: is_prime

number_primes = 0

DO i = 3,(limit-1)
    is_prime = .TRUE.
    DO j = 2, (i-1)
        IF (MODULO(i, j) == 0) THEN
            is_prime = .FALSE.
            EXIT
        END IF
    END DO
    IF (is_prime .EQV. .TRUE.) THEN
    number_primes = number_primes + 1
    END IF
END DO
end function find_number_of_primes

Получение фактических простых чисел:

SUBROUTINE get_primes(number_primes, primes)
IMPLICIT NONE
INTEGER, INTENT(IN) :: number_primes
INTEGER :: i, found_primes, j
LOGICAL:: is_prime
INTEGER, INTENT(OUT) :: primes(number_primes)
i = 3
found_primes = 0
DO
is_prime = .TRUE.
DO j = 2, (i-1)
    IF (MODULO(i,j) == 0) THEN
        is_prime = .FALSE.
    END IF
END DO
IF (is_prime .EQV. .TRUE.) THEN
    found_primes = found_primes + 1
    primes(found_primes) = i
    IF (found_primes == number_primes) EXIT
END IF
i = i + 1
END DO


end SUBROUTINE get_primes

integer function multiplicity(a, b)
implicit none
INTEGER, INTENT(IN) :: a, b

multiplicity = 0
DO
    multiplicity = multiplicity + 1
    IF (MOD(b, (a**(multiplicity+1))) /= 0) THEN
        EXIT
    END IF
END DO
end function multiplicity

Вставьте для всего файла: https://pastebin.com/0F4zQYaH

Теперь в вопросе, который я связал, при расчете b во внутреннем цикле есть a ^ {v (n, k)} в знаменателе, но в ответе на вопрос термин в знаменателе равен a ^ {v (a, k)} .Кроме того, внутренний цикл в вопросе проходит от 1 до N , тогда как цикл в ответе изменяется от 1 до 2N .

Окончательный результат - NaN, вот несколько выводов консоли для digit = 2 и eps = 1:

************ i =           1 ***************************
 v_max =   2.00000000
 m =   9.00000000
 ------------- j =           1 -------------------------------
 b =   0.00000000
 A =   0.00000000
 v =   0.00000000
 ------------- j =           2 -------------------------------
 b =   0.00000000
 A =   0.00000000
 v =   0.00000000
 ------------- j =           3 -------------------------------
 b =   0.00000000
 A =   0.00000000
 v =   0.00000000
 ------------- j =           4 -------------------------------
 b =   0.00000000
 A =   0.00000000
 v =   0.00000000
 ------------- j =           5 -------------------------------
 b =   0.00000000
 A =   0.00000000
 v =   1.00000000
 v > 0 --> s =              NaN
 ------------- j =           6 -------------------------------
 b =   0.00000000
 A =   0.00000000
 v =   1.00000000
 v > 0 --> s =              NaN

и так далее, полный вывод: https://pastebin.com/ucJNg6Vi

Может кто-нибудь помочь мне понять, что я делаю не так?

1 Ответ

0 голосов
/ 16 октября 2018

В вашем коде есть ошибка:

v = v - multiplicity(primes(i),j)+multiplicity(primes(i),(2*j-1))

должно быть

v = v - multiplicity(primes(i),j)- multiplicity(primes(i),(2*j-1))

Также

        s = MOD(s*j*b*(A**(-1))*a**(v_max-v), m)

должно быть

        s = MOD(s + j*b*(A**(-1))*a**(v_max-v), m)
...