Я пытался добавить гауссовский шум к видеокадрам, но я получил эту ошибку, и я не знаю, как с ней справиться.
Traceback (последний вызов был последним): Файл "yolo_video.py ", строка 119, в swapRB = True, crop = False) cv2.error: OpenCV (4.0.0) C: \ projects \ opencv-python \ opencv \ modules \ dnn \ src \ dnn.cpp: 189: ошибка: (-215: утверждение не выполнено) image.depth () == blob_.depth () в функции 'cv :: dnn :: dnn4_v20180917 :: blobFromImages'
Вот мой код:
noise_factor=0.05
count=0
from skimage import util
while True:
count+=1
(grabbed, frame) = vs.read()
frame_noisy = frame.copy() + noise_factor * np.random.normal(loc=0.0, scale=1.0, size=frame.shape)
if not grabbed:
break
if W is None or H is None:
(H, W) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(frame_noisy, 1 /250, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
boxes = []
confidences = []
classIDs = []
for output in layerOutputs:
# loop over each of the detections
for detection in output:
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
if confidence > args["confidence"]:
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
idxs = cv2.dnn.NMSBoxes(boxes, confidences, args["confidence"],
args["threshold"])
if len(idxs) > 0:
for i in idxs.flatten():
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame_noisy, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]],
confidences[i])
cv2.putText(frame_noisy, text, (x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
if writer is None:
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(args["output"], fourcc, 30,
(frame.shape[1], frame.shape[0]), True)
if total > 0:
elap = (end - start)
print("[INFO] single frame took {:.4f} seconds".format(elap))
print("[INFO] estimated total time to finish: {:.4f}".format(
elap * total))
if(count==70):
import matplotlib.pyplot as plt
plt.imshow(frame_noisy)
plt.show()
writer.write(frame_noisy)
enter code here
Помогите, ребята.Ваши ответы будут очень полезны для меня.