Я пытаюсь построить модель оценки, используя полиномиальную регрессию.
Некоторые из этих данных взяты из базы данных, а целевое значение unconditional
взято из оценки и имеет 3 возможных метода.Я попробовал как полиномиальную, так и упорядоченную логистическую регрессию и обнаружил, что полиномиал давал лучшие результаты
Я стремлюсь построить счет для использования в моей базе данных, который помог бы предсказать unconditional
для любого нового случая, зарегистрированного в моей базе данных.
Ниже приведены воспроизводимые примеры:
testdata <- as.data.frame(cbind(
dependency.cat <- c('Low dependency <30%', 'High dependency >60%', 'High dependency >60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'High dependency >60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'High dependency >60%', 'Low dependency <30%', 'High dependency >60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'Low dependency <30%', 'High dependency >60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'Low dependency <30%', 'Low dependency <30%', 'Low dependency <30%', 'Average dependency 30-60%', 'High dependency >60%', 'High dependency >60%', 'High dependency >60%', 'High dependency >60%', 'Average dependency 30-60%', 'Average dependency 30-60%', 'High dependency >60%', 'High dependency >60%', 'High dependency >60%', 'High dependency >60%', 'High dependency >60%', 'Average dependency 30-60%'),
case.size <- c('Case size 1', 'Case size 4-5', 'Case size 2', 'Case size 4-5', 'Case size 2', 'Case size 6 or more', 'Case size 2', 'Case size 2', 'Case size 3', 'Case size 6 or more', 'Case size 3', 'Case size 6 or more', 'Case size 2', 'Case size 4-5', 'Case size 1', 'Case size 6 or more', 'Case size 3', 'Case size 4-5', 'Case size 6 or more', 'Case size 4-5', 'Case size 4-5', 'Case size 4-5', 'Case size 3', 'Case size 1', 'Case size 1', 'Case size 1', 'Case size 6 or more', 'Case size 6 or more', 'Case size 4-5', 'Case size 4-5', 'Case size 4-5', 'Case size 2', 'Case size 4-5', 'Case size 6 or more', 'Case size 6 or more', 'Case size 6 or more', 'Case size 3', 'Case size 4-5', 'Case size 2'),
gender <- c('Male', 'Female', 'Female', 'Female', 'Female', 'Female', 'Female', 'Male', 'Female', 'Female', 'Female', 'Male', 'Female', 'Female', 'Male', 'Male', 'Male', 'Female', 'Female', 'Male', 'Female', 'Female', 'Female', 'Male', 'Male', 'Male', 'Female', 'Male', 'Female', 'Male', 'Male', 'Female', 'Female', 'Male', 'Female', 'Female', 'Female', 'Female', 'Male'),
has.baby <- c('No', 'No', 'No', 'No', 'Yes', 'Yes', 'No', 'No', 'No', 'No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'No', 'No', 'Yes', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'No', 'Yes', 'Yes', 'Yes', 'No', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'No'),
able.to.work <- c('Yes', 'Yes', 'No', 'Yes', 'No', 'Yes', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'No', 'No', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'Yes', 'No', 'No', 'Yes', 'Yes'),
arrivalyear <- c('2012', '2017', '2013', '2014', '2012', '2015', '2012', '2017', '2012', '2013', '2014', '2015', '2015', '2014', '2017', '2015', '2012', '2013', '2014', '2012', '2013', '2013', '2012', '2013', '2016', '2013', '2012', '2015', '2015', '2017', '2016', '2012', '2015', '2017', '2012', '2016', '2016', '2016', '2013'),
unconditionnal <- c('OK', 'OK', 'OK', 'OK', 'OK', 'OK', 'OK', 'OK', 'OK', 'OK', 'OK', 'NotOK', 'OK', 'OK', 'Average', 'NotOK', 'Average', 'OK', 'NotOK', 'OK', 'OK', 'OK', 'OK', 'OK', 'NotOK', 'NotOK', 'OK', 'Average', 'OK', 'OK', 'Average', 'OK', 'OK', 'NotOK', 'OK', 'OK', 'OK', 'OK', 'OK')))
names(testdata) <- c("dependency.cat" ,"case.size" ,"gender" ,"has.baby" ,"able.to.work" ,"arrivalyear" ,"unconditionnal")
library(nnet)
model <- multinom(unconditionnal ~ ., data = testdata, trace = FALSE)
testdata$unconditionnal.predicted <- predict(model, testdata)
testdata <- cbind(testdata, predict(model, testdata, type ="p"))
Если бы это была простая логистическая регрессия, я мог бы использовать точку отсечения, а затем использовать пересечение с терминами для построения формулы оценки.но здесь я теряюсь, когда я сбиваюсь с предсказания unconditionnal.predicted
, а затем с другой стороны 3 вероятности быть в каждой категории predict(model, testdata, type ="p")
.
Как я могу перепроектировать мою полиномиальную регрессию для развитияформула выигрыша?это выглядело бы как ...
score = dependency.cat --- case.size --- gender -- has.baby -- able.to.work -- arrivalyear
if score > X then OK
if score < Z then NotOK
Может быть, то, о чем я думаю, не имеет смысла?Если нет, то какой подход я должен использовать?
Спасибо
Я видел https://stats.stackexchange.com/questions/76513/how-to-find-cutoff-values-in-multinomial-regression, но это не помогло мне ...