Я работаю с библиотекой Keras DL, чтобы классифицировать набор данных изображений.Я столкнулся с ошибкой, когда пытался обучить модель.
В наборе данных, над которым я работаю, нет большого количества данных, поэтому, например, тренировочный набор содержит 166 изображений.Я не уверен насчет ошибки, но думаю, что каким-то образом мне нужно изменить форму набора меток, чтобы исправить это.Вот код:
import tensorflow as tf
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Activation, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
DIR = '/home/.../'
IMG_H = 256
IMG_W = 256
IMG_CH = 1
loadFile = DIR + 'Img.npz'
X = np.load(loadFile)
trainImgSet = X['trainImgSet']
trainLabelSet = X['trainLabelSet']
testImgSet = X['testImgSet']
print('Shape of trainImgSet: {}'.format(trainImgSet.shape))
print('Shape of trainLabelSet: {}'.format(trainLabelSet))
#print('Shape of testImgSet:{}'.format(testImgSet))
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(256, (3, 3), input_shape = (IMG_H, IMG_W, IMG_CH)))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(1, 1)))
model.add(tf.keras.layers.Conv2D(256, (3, 3)))
model.add(tf.keras.layers.Activation('relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(1, 1)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(64))
model.add(tf.keras.layers.Dense(1))
model.add(tf.keras.layers.Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='adam',
metrics=['accuracy'])
model.summary()
#train the CNN
model.fit(trainImgSet, trainLabelSet, batch_size=10, epochs=5, validation_split=0.1)
Here is the error:
Traceback (most recent call last):
File "/home/Code/DeepCl.py", line 49, in <module>
model.fit(trainImgSet, trainLabelSet, batch_size=10, epochs=5, validation_split=0.1)
File "anaconda3/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 1536, in fit
validation_split=validation_split)
File "/anaconda3/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 992, in _standardize_user_data
class_weight, batch_size)
File "/anaconda3/lib/python3.6/site-packages/tensorflow/python/keras/engine/training.py", line 1169, in _standardize_weights
training_utils.check_array_lengths(x, y, sample_weights)
File "/anaconda3/lib/python3.6/site-packages/tensorflow/python/keras/engine/training_utils.py", line 426, in check_array_lengths
'and ' + str(list(set_y)[0]) + ' target samples.')
ValueError: Input arrays should have the same number of samples as target arrays. Found 166 input samples and 4 target samples.