Я использую gam
из пакета mgcv
для анализа набора данных с 24 записями:
ran f1 f2 y
1 3000 5 545
1 3000 10 1045
1 10000 5 536
1 10000 10 770
2 3000 5 842
2 3000 10 2042
2 10000 5 615
2 10000 10 1361
3 3000 5 328
3 3000 10 1028
3 10000 5 262
3 10000 10 722
4 3000 5 349
4 3000 10 665
4 10000 5 255
4 10000 10 470
5 3000 5 680
5 3000 10 1510
5 10000 5 499
5 10000 10 1422
6 3000 5 628
6 3000 10 2062
6 10000 5 499
6 10000 10 2158
Данные имеют два фиксированных эффекта (f1
и f2
) и один случайныйэффект (ran
).Зависимые данные y
.Поскольку зависимые данные y
представляют счет и имеют избыточную дисперсию, я использую отрицательную биномиальную модель.
Модель gam
и ее вывод summary
выглядят следующим образом:
library(mgcv)
summary(gam(y ~ f1 * f2 + s(ran, bs = "re"), data = df2, family = nb, method = "REML"))
Family: Negative Binomial(27.376)
Link function: log
Formula:
y ~ f1 * f2 + s(ran, bs = "re")
Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.500e+00 3.137e-01 17.533 < 2e-16 ***
f1 -3.421e-05 3.619e-05 -0.945 0.345
f2 1.760e-01 3.355e-02 5.247 1.55e-07 ***
f1:f2 2.665e-07 4.554e-06 0.059 0.953
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value
s(ran) 4.726 5 85.66 <2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
R-sq.(adj) = 0.866 Deviance explained = 93.6%
-REML = 185.96 Scale est. = 1 n = 24
Тест Вальда из summary
дает очень высокое значение для f2
(P = 1.55e-07
),Однако, когда я проверяю значимость f2
, сравнивая две разные модели с использованием anova, я получаю совершенно разные результаты:
anova(gam(y ~ f1 * f2 + s(ran, bs = "re"), data = df2, family = nb, method = "ML"),
gam(y ~ f1 + s(ran, bs = "re"), data = df2, family = nb, method = "ML"),
test="Chisq")
Analysis of Deviance Table
Model 1: y ~ f1 * f2 + s(ran, bs = "re")
Model 2: y ~ f1 + s(ran, bs = "re")
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 14.843 18.340
2 16.652 21.529 -1.8091 -3.188 0.1752
f2 больше не имеет значения.Модели были изменены с REML на ML, как рекомендовано для оценки фиксированных эффектов.
Если взаимодействие сохраняется, f2 все еще остается незначительным при использовании anova:
anova(gam(y ~ f1 + f2 + f1:f2 + s(ran, bs = "re"), data = df2, family = nb, method = "ML"),
gam(y ~ f1 + f1:f2 + s(ran, bs = "re"), data = df2, family = nb, method = "ML"),
test="Chisq")
Analysis of Deviance Table
Model 1: y ~ f1 + f2 + f1:f2 + s(ran, bs = "re")
Model 2: y ~ f1 + f1:f2 + s(ran, bs = "re")
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 14.843 18.340
2 15.645 19.194 -0.80159 -0.85391 0.2855
Я был бы очень признателен за совет, какой из этих подходов является более подходящим.Большое спасибо!