Один метод состоит в том, чтобы вычислить сгруппированные средние значения для каждой таблицы в списке, затем связать, а затем вычислить взвешенное среднее значение из них.Поскольку у каждой буквы разные значения, вам также нужно сохранить .N
.
Я собираюсь изменить каждый элемент списка, чтобы мы могли проверить средневзвешенные вычисления.Для воспроизводимости:
set.seed(1)
myList <- replicate(5, data.table(x=rnorm(10^6,100,10), letters=sample(LETTERS,10^6,T)),
simplify=FALSE)
myList[1:2]
# [[1]]
# x letters
# 1: 93.73546 P
# 2: 101.83643 I
# 3: 91.64371 F
# 4: 115.95281 V
# 5: 103.29508 D
# ---
# 999996: 109.24487 Q
# 999997: 99.86486 K
# 999998: 93.95941 J
# 999999: 116.28763 O
# 1000000: 106.93750 E
# [[2]]
# x letters
# 1: 97.53576 R
# 2: 105.27503 T
# 3: 107.53592 L
# 4: 102.21228 M
# 5: 98.71087 G
# ---
# 999996: 109.46843 C
# 999997: 99.14458 M
# 999998: 96.76845 Y
# 999999: 94.22413 E
# 1000000: 98.25855 K
Чтобы сделать это только для одной таблицы:
head(myList[[1]][,.(mu = mean(x), n = .N), keyby=letters])
# letters mu n
# 1: A 100.04987 39005
# 2: B 100.01288 38576
# 3: C 99.97402 38547
# 4: D 99.99909 38460
# 5: E 100.03689 38030
# 6: F 100.02697 38293
Сначала вычислите средние значения для каждого элемента списка:
myAgg <- rbindlist(lapply(myList, function(d) d[,.(mu = mean(x), n = .N), keyby="letters"]))
Сейчассделать средневзвешенное значение вручную или с помощью Hmisc::wtd.mean
:
cbind(
# just to verify the below answer is the same as the brute-force method of rbind-then-average
rbindlist(myList)[,.(mu = mean(x)), keyby=letters],
# either of these is your answer
myAgg[,.(mu = sum(n*mu)/sum(n)),keyby=letters],
myAgg[,.(mu = Hmisc::wtd.mean(mu, weights=n)),keyby=letters]
)
# letters mu letters mu letters mu
# 1: A 100.02325 A 100.02325 A 100.02325
# 2: B 100.03473 B 100.03473 B 100.03473
# 3: C 100.00688 C 100.00688 C 100.00688
# 4: D 100.04041 D 100.04041 D 100.04041
# 5: E 100.00780 E 100.00780 E 100.00780
# 6: F 100.01202 F 100.01202 F 100.01202
# 7: G 100.01200 G 100.01200 G 100.01200
# 8: H 99.97232 H 99.97232 H 99.97232
# 9: I 100.00495 I 100.00495 I 100.00495
# 10: J 100.03019 J 100.03019 J 100.03019
# 11: K 99.96851 K 99.96851 K 99.96851
# 12: L 100.01850 L 100.01850 L 100.01850
# 13: M 100.00976 M 100.00976 M 100.00976
# 14: N 100.01299 N 100.01299 N 100.01299
# 15: O 100.02108 O 100.02108 O 100.02108
# 16: P 100.02052 P 100.02052 P 100.02052
# 17: Q 100.03814 Q 100.03814 Q 100.03814
# 18: R 99.99013 R 99.99013 R 99.99013
# 19: S 99.95219 S 99.95219 S 99.95219
# 20: T 99.97721 T 99.97721 T 99.97721
# 21: U 99.96310 U 99.96310 U 99.96310
# 22: V 99.94430 V 99.94430 V 99.94430
# 23: W 99.98877 W 99.98877 W 99.98877
# 24: X 100.07352 X 100.07352 X 100.07352
# 25: Y 99.96677 Y 99.96677 Y 99.96677
# 26: Z 99.99397 Z 99.99397 Z 99.99397
# letters mu letters mu letters mu
Быстрый сравнительный анализ, для сравнения:
library(microbenchmark)
microbenchmark(
bruteforce = rbindlist(myList)[,.(mu = mean(x)), keyby=letters],
# either of these is your answer
baseR = {
myAgg <- rbindlist(lapply(myList, function(d) d[,.(mu = mean(x), n = .N), keyby="letters"]))
myAgg[,.(mu = sum(n*mu)/sum(n)),keyby=letters]
},
Hmisc = {
myAgg <- rbindlist(lapply(myList, function(d) d[,.(mu = mean(x), n = .N), keyby="letters"]))
myAgg[,.(mu = Hmisc::wtd.mean(mu, weights=n)),keyby=letters]
},
times=50
)
# Unit: milliseconds
# expr min lq mean median uq max neval
# bruteforce 131.8770 139.4562 153.93202 151.95375 159.6329 315.6117 50
# baseR 89.7047 93.3623 109.20174 98.11670 115.0171 268.2517 50
# Hmisc 89.2784 91.5927 97.87455 93.73475 98.1655 119.2671 50