import random
import gym
import numpy as np
from collections import deque
from keras.models import Sequential
from keras.layers import Dense
from keras.optimizers import Adam
import os
env = gym.make('CartPole-v0')
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
batch_size = 32
n_episodes = 1000
output_dir = 'model_output/cartpole'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
class DQNAgent:
def __init__(self, state_size, action_size):
self.state_size = state_size
self.action_size = action_size
self.memory = deque(maxlen=2000)
self.gamma = 0.9
self.epsilon = 1.0
self.epsilon_decay = 0.995
self.epsilon_min = 0.05
self._learning_rate = 0.01
self.model = self._build_model()
def _build_model(self):
model = Sequential()
model.add(Dense(24, input_dim = self.state_size, activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(24,activation='relu'))
model.add(Dense(50,activation='relu'))
model.add(Dense(self.action_size, activation='sigmoid'))
model.compile(loss='mse', optimizer=Adam(lr=self._learning_rate))
return model
def remember(self, state, action, reward, next_state, done):
self.memory.append((self, state, action, reward, next_state, done))
def act(self, state):
if np.random.rand() <= self.epsilon:
return random.randrange(self.action_size)
act_values = self.model.predict(state)
return np.argmax(act_values[0])
def replay(self, batch_size):
minibatch = random.sample(self.memory, batch_size)
print(len(minibatch))
for state, action, reward, next_state, done in minibatch:
target = reward
if not done:
target = (reward + self.gamma*np.amax(self.model.predict(next_state)[0]))
target_f = self.model.predict(state)
target_f[0][action] = target
self.model.fit(state, target_f, epochs=1, verboss=0)
if self.epsilon > self.epsilon_min:
self.epsilon *= self.epsilon_decay
def load(self,name):
self.model.load_weights(name)
def save(self, name):
self.model.save_weights(name)
agent = DQNAgent(state_size, action_size)
done = False
for e in range(n_episodes):
state = env.reset()
state = np.reshape(state, [1, state_size])
if agent.epsilon > agent.epsilon_min:
agent.epsilon *= agent.epsilon_decay
for time in range(5000):
# env.render()
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
reward = reward if not done else -10
next_state = np.reshape(next_state, [1, state_size])
agent.remember(state, action, reward, next_state, done)
state = next_state
if done:
print("episode: {}/{}, score: {}, e: {:.2}".format(e, n_episodes, time, agent.epsilon))
break
if len(agent.memory) > batch_size:
agent.replay(batch_size)
if e % 50 == 0:
agent.save(output_dir + "weights_" + '{:04d}'.format(e) + ".hdf5")
Я создаю алгоритм для среды cartpole в тренажерном зале openai, но получаю эту ошибку:
Трассировка (последний последний вызов): Файл "C: / Users / ardao / Desktop/ Ardaficial Intelligence / DQNs / CartPole.py ", строка 145, в файле agent.replay (batch_size)" C: / Users / ardao / Desktop / Ardaficial Intelligence / DQNs / CartPole.py ", строка 93, в режиме воспроизведения для состояния,action, reward, next_state, выполнено в мини-пакете: ValueError: слишком много значений для распаковки (ожидается 5)
Я следую этому уроку: https://www.youtube.com/watch?v=OYhFoMySoVs&t=2444s
Спасибо
Arda