Я сейчас читаю Обучение усилению: Введение (RL: AI) и пытаюсь воспроизвести первый пример с n-вооруженным бандитом и простым усреднением награды.
Усреднение
new_estimate = current_estimate + 1.0 / step * (reward - current_estimate)
Чтобы воспроизвести график из PDF, я генерирую 2000 бандитских игр и позволяю различным агентам воспроизводить 2000 бандитов за 1000 шагов (как описано в PDF), а затем усреднятьвознаграждение, а также процент оптимальных действий.
В PDF результат выглядит следующим образом:
Однако я не могу воспроизвести это.Если я использую простое усреднение, все агенты с разведкой (epsilon > 0
) на самом деле играют хуже, чем агенты без разведки.Это странно, потому что возможность исследования должна позволить агентам чаще выходить из локального оптимума и достигать лучших действий.
Как вы можете видеть ниже, это не относится к моей реализации.Также обратите внимание, что я добавил агентов, которые используют взвешенное усреднение.Это работает, но даже в этом случае повышение epsilon
приводит к снижению производительности агентов.
Есть идеи, что не так в моем коде?
Код (MVP)
from abc import ABC
from typing import List
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from multiprocessing.pool import Pool
class Strategy(ABC):
def update_estimates(self, step: int, estimates: np.ndarray, action: int, reward: float):
raise NotImplementedError()
class Averaging(Strategy):
def __str__(self):
return 'avg'
def update_estimates(self, step: int, estimates: np.ndarray, action: int, reward: float):
current = estimates[action]
return current + 1.0 / step * (reward - current)
class WeightedAveraging(Strategy):
def __init__(self, alpha):
self.alpha = alpha
def __str__(self):
return 'weighted-avg_alpha=%.2f' % self.alpha
def update_estimates(self, step: int, estimates: List[float], action: int, reward: float):
current = estimates[action]
return current + self.alpha * (reward - current)
class Agent:
def __init__(self, nb_actions, epsilon, strategy: Strategy):
self.nb_actions = nb_actions
self.epsilon = epsilon
self.estimates = np.zeros(self.nb_actions)
self.strategy = strategy
def __str__(self):
return ','.join(['eps=%.2f' % self.epsilon, str(self.strategy)])
def get_action(self):
best_known = np.argmax(self.estimates)
if np.random.rand() < self.epsilon and len(self.estimates) > 1:
explore = best_known
while explore == best_known:
explore = np.random.randint(0, len(self.estimates))
return explore
return best_known
def update_estimates(self, step, action, reward):
self.estimates[action] = self.strategy.update_estimates(step, self.estimates, action, reward)
def reset(self):
self.estimates = np.zeros(self.nb_actions)
def play_bandit(agent, nb_arms, nb_steps):
agent.reset()
bandit_rewards = np.random.normal(0, 1, nb_arms)
rewards = list()
optimal_actions = list()
for step in range(1, nb_steps + 1):
action = agent.get_action()
reward = bandit_rewards[action] + np.random.normal(0, 1)
agent.update_estimates(step, action, reward)
rewards.append(reward)
optimal_actions.append(np.argmax(bandit_rewards) == action)
return pd.DataFrame(dict(
optimal_actions=optimal_actions,
rewards=rewards
))
def main():
nb_tasks = 2000
nb_steps = 1000
nb_arms = 10
fig, (ax_rewards, ax_optimal) = plt.subplots(2, 1, sharex='col', figsize=(8, 9))
pool = Pool()
agents = [
Agent(nb_actions=nb_arms, epsilon=0.00, strategy=Averaging()),
Agent(nb_actions=nb_arms, epsilon=0.01, strategy=Averaging()),
Agent(nb_actions=nb_arms, epsilon=0.10, strategy=Averaging()),
Agent(nb_actions=nb_arms, epsilon=0.00, strategy=WeightedAveraging(0.5)),
Agent(nb_actions=nb_arms, epsilon=0.01, strategy=WeightedAveraging(0.5)),
Agent(nb_actions=nb_arms, epsilon=0.10, strategy=WeightedAveraging(0.5)),
]
for agent in agents:
print('Agent: %s' % str(agent))
args = [(agent, nb_arms, nb_steps) for _ in range(nb_tasks)]
results = pool.starmap(play_bandit, args)
df_result = sum(results) / nb_tasks
df_result.rewards.plot(ax=ax_rewards, label=str(agent))
df_result.optimal_actions.plot(ax=ax_optimal)
ax_rewards.set_title('Rewards')
ax_rewards.set_ylabel('Average reward')
ax_rewards.legend()
ax_optimal.set_title('Optimal action')
ax_optimal.set_ylabel('% optimal action')
ax_optimal.set_xlabel('steps')
plt.xlim([0, nb_steps])
plt.show()
if __name__ == '__main__':
main()