Потери и точность этого LSTM упали почти до 0 в ту же эпоху - PullRequest
1 голос
/ 26 сентября 2019

Я пытаюсь обучить LSTM прогнозировать токен Nth, используя N-1 предшествующие ему токены

Для каждого закодированного токена One-Hot, я пытаюсь предсказать следующий токен.После двух уровней LSTM результаты передаются на плотный слой (завернутый в оболочку слоя TimeDistributed) для перекодирования результатов в одну и ту же кодировку One-Hot.

Как ни странно, после несколькихэпохи точность (и в обучении, и в проверке) падает почти до 0 (плохие новости), в то время как потеря также падает почти до 0 (хорошие новости?).

Representative results

Почему это происходит?Я знаю, что не могу ожидать, что потеря и точность всегда будут идти в противоположных направлениях (поскольку потеря использует категориальную кросс-энтропию по всем категориям, в то время как точность использует только лучшие или k лучших категорий), но все же - это поведение весьма неожиданнои необъяснимо.

Что вызывает это?Я делаю что-то не так?Как я должен изменить свой код, чтобы моя сеть развивалась в направлении более точных прогнозов?

Мой код выглядит следующим образом:

import numpy as np
import glob

import keras
from keras.models import Sequential
from keras.layers import LSTM, Dense, TimeDistributed,Lambda, Dropout, Activation
from keras.metrics import top_k_categorical_accuracy
from keras.callbacks import ModelCheckpoint

###
import matplotlib
matplotlib.use('Agg') # prevents it from failing when there is no display
import matplotlib.pyplot as plt
import keras.backend as K
###

name='Try_6'
model_designation=str(name)+'_'

train_val_split=0.2 # portion to be placed in validation


train_control_number=0
val_control_number=0
batch_size = 16

def my_3D_top_5(true, pred):
    features_num=int(list(pred.shape)[-1])

    true = K.reshape(true, (-1, features_num))   
    pred = K.reshape(pred, (-1, features_num))
    return top_k_categorical_accuracy(true, pred, k=5)

def my_3D_top_10(true, pred):
    features_num=int(list(pred.shape)[-1])

    true = K.reshape(true, (-1, features_num))   
    pred = K.reshape(pred, (-1, features_num))
    return top_k_categorical_accuracy(true, pred, k=10)



def basic_LSTM(features_num):
    model = Sequential()
    model.add(LSTM(40, return_sequences=True, input_shape=(None, features_num)))
    model.add(LSTM(40, return_sequences=True))
    model.add(LSTM(40, return_sequences=True))

    model.add(TimeDistributed(Dense(features_num)))
    model.add(Activation('linear')) 

    print(model.summary())
    model.compile(loss='categorical_crossentropy', optimizer='adam',metrics=['accuracy',my_3D_top_5,my_3D_top_10])  
    return (model)


def main ():
    input_files=glob.glob('*npy')
    data_list,dim=loader(input_files)
    train_list,val_list=data_spliter(data_list)

    train_list=group_data(train_list,batch_size)
    val_list=group_data(val_list,batch_size)

    filepath = "saved-model-"+model_designation+"-{epoch:02d}.hdf5"
    checkpoint = ModelCheckpoint(filepath, save_best_only=False)
    callbacks_list=[checkpoint] 


    model=basic_LSTM(dim)
    history=model.fit_generator(train_generator(train_list), steps_per_epoch=len(train_list), epochs=30, verbose=1,validation_data=val_generator(val_list),validation_steps=len(val_list),callbacks=callbacks_list)
    report(history)


def group_data(data_list,size):  # groups data and elongate it to match
    output=[]
    list_of_sizes=[]
    for data in data_list:
        list_of_sizes.append(list(data.shape)[1]) 

    data_list = [x for _, x in sorted(zip(list_of_sizes,data_list), key=lambda pair: pair[0])]

    while len(data_list)>size:
        this=data_list[:size]
        data_list=data_list[size:]
        combined=(elongate_and_combine(this))
        output.append(combined)


    combined=(elongate_and_combine(data_list))
    output.append(combined)


    return (output)

def elongate_and_combine(data_list):

    max_length= (list(data_list[-1].shape)[1]) 
    last_element=list.pop(data_list)
    output=last_element




    stop_codon=last_element[0,(max_length-1),:]
    stop_codon=stop_codon.reshape(1,1,stop_codon.size)

    for data in data_list:
        size_of_data=list(data.shape)[1]
        while size_of_data<max_length:
            data=np.append(data, stop_codon, axis=1)
            size_of_data=list(data.shape)[1]
        output=np.append(output, data, axis=0)


    return (output)


def train_generator(data_list):
    while True:
        global train_control_number
        train_control_number=cycle_throught(len(data_list),train_control_number)
        #print (train_control_number)       
        this=data_list[train_control_number]


        x_train = this [:,:-1,:] # all but the last 1
        y_train = this [:,1:,:] # all but the first 1

        yield (x_train, y_train)




def val_generator(data_list):
    while True:
        global val_control_number
        val_control_number=cycle_throught(len(data_list),val_control_number)
        #print (val_control_number)     
        this=data_list[val_control_number]
        x_train = this [:,:-1,:] # all but the last 1
        y_train = this [:,1:,:] # all but the first 1

        yield (x_train, y_train)



def cycle_throught (total,current):
    current+=1
    if (current==total):
        current=0
    return (current)


def loader(input_files):

    data_list=[]

    for input_file in input_files:
        a=np.load (input_file)
        incoming_shape=list(a.shape)
        requested_shape=[1]+incoming_shape
        a=a.reshape(requested_shape)
        #print (a.shape)
        data_list.append(a)


    return (data_list,incoming_shape[-1])


def data_spliter(input_list):
    val_num=int(len(input_list)*train_val_split)
    validation=input_list[:val_num]
    train=input_list[val_num:]

    return (train,validation)

def report(history) :


    print(history.history.keys())


    acc = history.history['acc']
    val_acc = history.history['val_acc']

    loss = history.history['loss']
    val_loss = history.history['val_loss']

    acc_5=history.history['my_3D_top_5']
    val_acc_5=history.history['val_my_3D_top_5']

    acc_10=history.history['my_3D_top_10']
    val_acc_10=history.history['val_my_3D_top_10']



    epochs = range(1, len(acc) + 1)

    fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(10, 6))



    axes[0][0].plot(epochs, acc, 'bo', label='Training acc')
    axes[0][0].plot(epochs, val_acc, 'b', label='Validation acc')
    axes[0][0].set_title('Training and validation accuracy')
    axes[0][0].legend()



    axes[0][1].plot(epochs, loss, 'ro', label='Training loss')
    axes[0][1].plot(epochs, val_loss, 'r', label='Validation loss')
    axes[0][1].set_title('Training and validation loss')
    axes[0][1].legend()

    axes[1][0].plot(epochs, acc_5, 'go', label='Training acc over top 5')
    axes[1][0].plot(epochs, val_acc_5, 'g', label='Validation acc over top 5')
    axes[1][0].set_title('Training and validation accuracy over top 5')
    axes[1][0].legend()

    axes[1][1].plot(epochs, acc_10, 'mo', label='Training acc over top 10')
    axes[1][1].plot(epochs, val_acc_10, 'm', label='Validation acc over top 10')
    axes[1][1].set_title('Training and validation accuracy over top 10')
    axes[1][1].legend()

    fig.tight_layout()
    fig.savefig('fig_'+name+'.png')   # save the figure to file



main()
...