Я взял встроенную модель keras.applications.vgg16.VGG16 (weights = 'imagenet', include_top = True, input_shape = (224,224,3)) и перенес обучение для набора данных PASCAL VOC 2012 с 20 классами, включая GlobalСредний уровень объединения, как показано ниже:
def VGG16_modified():
base_model = vgg16.VGG16(include_top=True,weights='imagenet',input_shape=(224,224,3))
print(base_model.summary())
x = base_model.get_layer('block5_pool').output
x = (GlobalAveragePooling2D())(x)
predictions = Dense(20,activation='sigmoid')(x)
final_model = Model(input = base_model.input, output = predictions)
print(final_model.get_weights())
return final_model
Теперь я хочу взять карту активации класса, основанную на этой бумаге.Для этого мой код приведен ниже:
def get_CAM(model,img):
model = load_model(model)
im = image.load_img(img,target_size=(224,224))
im = image.img_to_array(im)
im = np.expand_dims(im,axis=0)
class_weights = model.layers[-1].get_weights()[0]
final_conv_layer = model.get_layer('block5_pool')
cam_model = Model(inputs = model.input,outputs=(final_conv_layer.output,model.layers[-1].output))
conv_outputs, predictions = cam_model.predict(im)
conv_outputs = np.squeeze(conv_outputs)
prediction = np.argmax(predictions)
print(predictions)
print(prediction)
print(conv_outputs)
print(conv_outputs.shape)
class_weights = class_weights[:,prediction]
mat_for_mult = scipy.ndimage.zoom(conv_outputs,(32,32,1),order=1)
final_output = np.dot(mat_for_mult.reshape((224*224, 512)),class_weights).reshape((224,224))
print(final_output)
return final_output
Но cam_model.predict (im) всегда дает один и тот же класс для всех изображений.Я не уверен, где я не так с этим.Поскольку pascal voc 2012 содержит изображения с несколькими метками, я использовал 'sigmoid' в последнем слое updated_vgg16, а не softmax.Можете ли вы дать мне знать, где я ошибся.