ImageDataGenerator с дополнительным вводом текста - PullRequest
0 голосов
/ 29 сентября 2019

Архитектура, которую я пытаюсь реализовать, находится здесь: Архитектура модели, адаптированной к данным пациента: ResNet-50 .Мои изображения разделены на папки по меткам:

root/
    ├── train/
    │   ├── class1/
    │   ├── class2/
    │   ...
    │
    └── validation/
       ├── class1/
       ├── class2/
       ...

У меня также есть файл CSV, который содержит имя изображения, метки изображения (изображение может иметь несколько меток классов) и дополнительную информацию:

+--------+---------------+-------+------+
| File  |    Labels     | Info1 | Info2 |
+-------+---------------+-------+-------+
| 1.png | class1        | 0.512 |     1 |
| 2.png | class2        |   0.4 |     0 |
| 3.png | class1|class2 |  0.64 |     1 |
+-------+---------------+-------+-------+

Моя сетевая модель имеет два входа: один, который будет использоваться для обработки изображения, и другой, который будет соединяться с последним слоем перед плотным слоем:

input_shape = (img_height, img_width, 1)

img_input= Input(input_shape)
vec_input = Input((2,))

res = ZeroPadding2D((3, 3))(img_input)

# Processing ...

res = Flatten()(res)
res = Concatenate()([res, vec_input])
res = Dense(classes, activation='softmax', name='fc' + str(classes))(res)

Чтобы получить изображенияЯ использую ImageDataGenerator с flow_from_directory, который прекрасно работает для получения только данных изображения:

validation_datagen = ImageDataGenerator(rescale=1. / 255)
validation_generator = validation_datagen.flow_from_directory(
        validation_dir,
        target_size=(target_size, target_size),
        batch_size=batch_size,
        class_mode=class_mode,
        color_mode=color_mode)

# Similarly for the train data generator ...

# Train the model using above defined data generators
history = model.fit_generator(
    train_generator,
    epochs=epochs,
    validation_data=validation_generator)

Теперь мне нужно использовать дополнительную информацию для каждого изображения в качестве vec_input в моей модели.Я смотрел на использование flow_from_dataframe и создание пользовательских генераторов, но не уверен, как это сделать.Я могу реструктурировать изображения, поместив их в ту же папку, если это необходимо, хотя тогда я полагаю, что не могу использовать flow_from_directory.Любые идеи о том, как я могу этого достичь?

РЕДАКТИРОВАТЬ:

Если кому-то нужно решение, вот что я смог придумать:

class CustomSequenceGenerator(Sequence):

    def __init__(self, image_dir, csv_file_path, label_path, dim=448, batch_size=8,
                 n_classes=15, n_channels=1, vec_size=3, shuffle=True):
        # Keras generator
        self.image_dir = image_dir
        self.image_file_list = os.listdir(image_dir)
        self.batch_size = batch_size
        self.csv_file = pd.read_csv(csv_file_path)
        self.n_classes = n_classes
        self.dim = dim
        self.n_channels = n_channels
        self.shuffle = shuffle
        self.vec_size = vec_size
        self.labels = get_class_labels(label_path)
        self.labels_dict = dict(zip(self.labels, range(0, len(self.labels))))

        self.csv_file.set_index('File', inplace=True, drop=True)

    def __len__(self):
        """It is mandatory to implement it on Keras Sequence"""
        return int(np.ceil(len(self.image_file_list) / float(self.batch_size)))

    def __getitem__(self, index):

        # Generate indexes of the batch
        samples = self.image_file_list[index * self.batch_size:(index + 1) * self.batch_size]

        x, y = self.__data_generation(samples, index)
        return x, y

    def __data_generation(self, samples, start_index):

        x_batch_image = np.empty((self.batch_size, self.dim, self.dim, self.n_channels))
        x_batch_vector = np.empty((self.batch_size, self.vec_size))
        y_batch = np.empty((self.batch_size, self.n_classes))
        self.csv_file.reindex()
        for i, sample in enumerate(samples):
            image_file_path = self.image_dir + "/" + sample
            image = self.preprocess_image(Image.open(image_file_path), 448)

            features, labels = self.preprocess_csv(self.csv_file, sample, self.labels_dict, self.n_classes)
            x_batch_image[i] = image
            x_batch_vector[i] = features
            y_batch[i] = labels

        return [x_batch_image, x_batch_vector], y_batch

1 Ответ

0 голосов
/ 29 сентября 2019

Я думаю, что лучший способ добиться этого - реализовать пользовательский Sequence объект , потенциально наследуя методы ImageDataGenerator.Может быть, то, что вам нужно, не требует всей сложности ImageDataGenerator (т.е. случайных преобразований, сохранения изображений, интерполяции), и в этом случае вам не нужно наследовать его.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...