Я пытаюсь запустить распределенное задание Python через конвейеры Azure ML, используя класс конвейера MPIStep, ссылаясь на ссылку ниже в примере - https://github.com/Azure/MachineLearningNotebooks/blob/master/how-to-use-azureml/machine-learning-pipelines/pipeline-style-transfer/pipeline-style-transfer.ipynb
Я пытался реализовать то же самое, но даже я изменяю количество узловпараметр в классе MpiStep, при запуске скрипта он показывает размер (т.е. comm.Get_size ()) как 1 всегда. Не могли бы вы помочь мне в том, что мне здесь не хватает. Требуется ли какая-либо конкретная настройка для кластера?
Фрагменты кода:
Фрагмент кода конвейера:
model_dir = model_ds.path('./'+saved_model_blob+'/',data_reference_name='saved_model_path').as_mount()
label_dir = model_ds.path('./'+model_label_blob+'/',data_reference_name='model_label_blob').as_mount()
input_images = result_ds.path('./'+score_blob_name+'/',data_reference_name='Input_images').as_mount()
output_container = 'abc'
inti_container = 'xyz'
distributed_batch_score_step = MpiStep(
name="batch_scoring",
source_directory=SCRIPT_FOLDER,
script_name="batch_scoring_script_mpi.py",
arguments=["--dataset_path", input_images,
"--model_name", model_dir,
"--label_dir", label_dir,
"--intermediate_data_container", inti_container,
"--output_container", output_container],
compute_target=gpu_cluster,
inputs=[input_images, model_dir,label_dir],
pip_packages=["tensorflow","tensorflow-gpu==1.13.1","pillow","azure-keyvault","azure-storage-blob"],
conda_packages=["mesa-libgl-cos6-x86_64","mpi4py==3.0.2","opencv=3.4.2","scikit-learn=0.21.2"],
use_gpu=True,
allow_reuse = False,
node_count = nodecount_param,
process_count_per_node = 1
)
Фрагмент кода скрипта Python:
def run(input_dataset,comm):
rank = comm.Get_rank()
size = comm.Get_size()
print("Rank:" , rank)
print("Size:", size) # shows always 1, even the input node count is >1
print(MPI.Get_processor_name())
file_names = get_file_names(args.dataset_path)
sorted(file_names)
partition_size = len(file_names) // size
print("partition_size-->",partition_size)
partitioned_filenames = file_names[rank * partition_size: (rank + 1) * partition_size]
print("RANK {} - is processing {} images out of the total {}".format(rank, len(partitioned_filenames),
len(file_names)))
# call to Function 01
# call to Function 02
img_names = score_df['image_name'].unique()
output_batch = pd.DataFrame()
for i in img_names:
# call to Function 3
output_batch = output_batch.append(pp_output, ignore_index=True)
output_paths_list = comm.gather(output_batch, root=0)
print("RANK {} - number of pre-aggregated output files {}".format(rank, len(output_batch)))
print("saved in", currentDT + '\\' + 'data.csv')
if rank == 0:
print("RANK {} - number of aggregated output files {}".format(rank, len(output_paths_list)))
print("RANK {} - end".format(rank))
if __name__ == "__main__":
with tf.device('/GPU:0'):
init()
comm = MPI.COMM_WORLD
run(args.dataset_path,comm)