Я довольно новичок в skmultiLearn, теперь я использую это для классификации по нескольким меткам в «китайских» документах. Набор данных для обучения довольно мал (например, 200 предложений), и я установил всего 6 классов. Даже если я использую предложение IN обучающий набор данных, я могу получить только [0,0,0,0,0,0] в качестве результата прогнозирования, могу ли я получить некоторую помощь в этом? Спасибо!
Мой код:
# Import BinaryRelevance from skmultilearn
from skmultilearn.problem_transform import BinaryRelevance
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.svm import SVC
from scipy import sparse
import jieba
import codecs
import numpy as np
from warnings import simplefilter
simplefilter(action='ignore', category=FutureWarning)
Q_list = []
L_list = []
# Read Sentence file
with codecs.open('multi-label-Q.txt',encoding='utf-8') as infile:
for line in infile:
Q_list.append(line[:-2])
infile.close()
# Read Label file
with open('multi-label-L.txt') as infile:
for line in infile:
tmp_l = line[:-1].split(',')
L_list.append(tmp_l)
infile.close()
L_list = np.array(L_list)
L_Question_list = []
# Preprocess for Chinese sentences
for line in Q_list:
seg_list = jieba.lcut(line, cut_all=False)
q_addSpace = ''
for w in seg_list:
q_addSpace = q_addSpace + w + ' '
L_Question_list.append(q_addSpace[:-1])
cv = CountVectorizer()
cv_fit=cv.fit_transform(L_Question_list)
transformer = TfidfTransformer()
tfidf = transformer.fit_transform(cv_fit)
M = sparse.lil_matrix((len(L_list),6), dtype=int)
for i,row in enumerate(L_list):
count = 0
for col in row:
M[i, count] = col
count += 1
# Setup the classifier
clf = BinaryRelevance(classifier=SVC())
# Train
clf.fit(tfidf, M)
# A sentence in train dataset
x_test = '偏头痛多发于什么年龄层?'
# Preprocess for Chinese sentence
seg_list = jieba.lcut(x_test, cut_all=False)
q_addSpace = ''
for w in seg_list:
q_addSpace = q_addSpace + w + ' '
X_test = [q_addSpace]
cv_fit2=cv.transform(X_test)
tfidf2 = transformer.transform(cv_fit2)
# Predict
pred = clf.predict(tfidf2)
print(pred.todense())